
Learning Optimal Navigation Actions for Foresighted Robot Behavior
During Assistance Tasks

AbdElMoniem Bayoumi Maren Bennewitz

Abstract— We present an approach to learn optimal navi-
gation actions for assistance tasks in which the robot aims at
efficiently reaching the final navigation goal of a human where
service has to be provided. Always following the human at a
close distance might hereby result in inefficient trajectories,
since people regularly do not move on the shortest path to
their destination (e.g., they move to grab the phone or make
a note). Therefore, a service robot should infer the human’s
intended navigation goal and compute its own motion based
on that prediction. We developed an approach that applies
reinforcement learning to get a Q-function that determines for
each pair of the robot’s and human’s relative positions the
best navigation action for the robot. Our approach applies a
prediction of the human’s motion based on a softened Markov
decision process (MDP). This MDP is independent from the
navigation learning framework and is learned beforehand on
previously observed trajectories. We thoroughly evaluated our
method in simulation and on a real robot. As the experimental
results show, our approach leads to foresighted navigation be-
havior and significantly reduces the path length and completion
time compared to naive following strategies.

I. INTRODUCTION

Following humans with mobile robots is a challenging
problem and is needed in several applications such as in
industrial settings where robots are deployed as transporta-
tion systems, in home scenarios, especially for the elderly
people, in stores with autonomous shopping carts, or in
scenes where robotic wheelchairs should navigate next to
an accompanying pedestrian. Various solutions have been
proposed for such problem instances as discussed in the next
section. However, these solutions mainly focus on following
the human at a certain distance irrespectively of its intended
destination. Accordingly, the robot will keep on following
the human, even if he does not move on the shortest path
to his goal. This inefficiency might arise since humans are
easily interrupted by unexpected events during navigation.
For example, consider a home-assistance robot performing
a delivery task and following the human when suddenly the
phone rings and needs to be grabbed, or the doorbell rings.
Or it might be that in the middle of the task an elderly
person decides to rest for a while. In such situations, a
robot applying a naive navigation strategy can only follow
the human since the destination is initially unknown to the
robot. This leads to inefficient navigation behavior causing
unnecessary battery consumption or wear.

All authors are with the Institute of Computer Science, University of
Bonn, Germany. This work has been supported by the German Academic
Exchange Service (DAAD) and the Egyptian Ministry for Higher Education
as well as by the European Commission under contract number FP7-610532-
SQUIRREL.

Fig. 1. The human moves through the environment between different
possible designated locations (top) where it stays for a while and might need
the help of a mobile robotic assistant. The task of the robot is to efficiently
reach the initially unknown destination of the human, who might not
move on the shortest trajectory. Our learning framework generates optimal
navigation actions based on predicted motions of the human (bottom), which
results in more foresighted behavior than just following the human at a close
distance.

In this paper, we present a reinforcement learning frame-
work that generates foresighted navigation actions in the
described situations and is able to deal with such unexpected
human behaviors during the tasks. Our approach constantly
predicts the human’s intended destination. Based on that
prediction, the robot follows the learned navigation strategy
and, thus, reaches the predicted navigation goal efficiently.

An overview of our framework is depicted in Fig. 1.
We rely on a set of previously observed human trajectories
between possible destinations where the human stays for a
while and might need the help of the robot, i.e., for general
assistance tasks, social interaction, or delivery tasks. Given
these trajectories, we apply a technique to learn a prediction
model that is used to reason about the future motions and the
target destination of the human. The output of our learning
framework is a table of Q-values that encodes the best
navigation action for the robot based on the current robot’s

and human’s positions as well as the predicted human’s
motion.

As we show in the experiments, our approach leads to
foresighted navigation behavior. The robot focuses on reach-
ing the human’s final destination, which is initially unknown
to the robot, efficiently. We demonstrate that a robot execut-
ing the learned navigation strategy can successfully handle
cases in which the human’s trajectory contains detours. Our
method results in paths with significantly shorter path length
and significantly reduced completion time compared to naive
following strategies. To the best of our knowledge, we
present the first solution for applications involving people
following tasks that considers the efficiency of the generated
robot paths.

II. RELATED WORK

The task of human following or target tracking has been
thoroughly investigated using control theory, e.g., Huang [1]
presented two control models for both the linear and angular
velocity of a robot. These control models focus on origi-
nating velocity commands that allow the robot to follow a
human while ensuring smoothness of the resulting trajectory.
Harmati and Skrzypczyk [2] applied a fuzzy logic controller
and proposed a game-theory based method for a team of
robots tracking a target. In this approach, each robot has
knowledge about the positions of its teammates and opti-
mizes its control signals using on a cost function that takes
also into account the predicted decisions of the other robots.
Similarly, Nascimentoa et al. [3] developed an approach
using a nonlinear predictive formation control model in a
distributed architecture for collaborating robots. Each robot
shares information about its pose with the rest of the team
and optimizes its control signals under a prediction of the
next states of the target as well as of the other team members.
Pradhan et al. [4] proposed a path planning method with
a navigation function that uses predictive fields of moving
obstacles to follow a target.

Furthermore, there are approaches that aim at following
a human with a fixed distance, e.g., Nishimura et al. [5]
developed a modified shopping cart to follow a person in
a certain range. Prassler et al. [6] considered side-by-side
following within the application of a robotic wheelchair
following a human. Also Kuderer and Burgard [7] considered
the wheelchair application and developed an approach to
predict the human trajectory taking into account information
about obstacles in the environment. The authors compute the
robot’s trajectory so that the distance to the desired relative
position along the predicted path is minimized. In this way,
the robot can act foresightedly during the following task and
local minima resulting from obstacles in the environment are
avoided. Morales et al. [8] analyzed side-by-side trajectories
of humans in order to predict the trajectory of a human
during walking beside a robot. Using the learned utility
function, the optimal robot trajectory can then be planned
locally.

Further approaches predict human trajectories to gener-
ate robot motions that do not interfere with people. Ben-

newitz et al. [9] proposed to predict human trajectories based
on learned motion patterns to avoid interferences in tight
environments. Laugier et al. [10] use hidden Markov models
to represent the motion of dynamic obstacles and avoid
collision. Ziebart et al. [11] developed an approach using
a Markov decision process (MDP) to learn from previously
observed trajectories. The authors learn a Q-table to predict
the human’s trajectories for collision-free navigation. In our
work, we use the method of Ziebart et al. to learn such a
Q-table, however, we aim at making use of the prediction to
learn how to efficiently follow a human.

Regarding the use of machine learning techniques in
related problems, Goldhoorn et al. [12] proposed solving a
hide-and-seek game using reinforcement learning with the
aim to find a human and follow him/her to a goal location.
The reward here relies on minimizing the distance between
the following robot and the human during the following
task. Tipaldi and Arras [13] focus on encountering a person
in the environment, i.e., the robot has to find the person.
The authors present a model that learns the spatio-temporal
behavior of humans and use this model within a MDP to
increase the encounter probability.

As opposed to all the approaches discussed above, we
present a learning framework that enables a service robot
to efficiently reach the intended destination of the human.
Using our approach, the robot is not required to follow the
human with a fixed distance, which might lead to inefficient
trajectories, instead the robot predicts the navigation goal,
constantly updates it, and adapts its actions accordingly.

III. MOTION PREDICTION

In this section, we present the motion prediction technique
applied in our learning framework. We predict the human’s
trajectory based on the trajectory observed so far and use the
prediction in the state space representation of our learning
approach for generating foresighted robot actions. Our tech-
nique for motion prediction is based on the work of Ziebart et
al. [11]. This approach models the sequence of motion
actions performed by a human as a softened Markov decision
process (MDP) whose state space corresponds to the cells
of a discretized grid map of the environment. The authors
propose to train a prediction model using a softened version
of the Bellman equation and value iteration to get a Q-table
that represents the most likely motion action performed by
the human at a certain position. This softened version uses
the soft-maximum function instead of the ordinary maximum
to be able to reason about the distribution of the trajectories,
instead of considering only one single trajectory. The soft-
maximum function is defined as

softmaxxf(x) = log
∑

x
ef(x) (1)

and is used within the computation of the state and action
values V (s) and Q(s, a):

Q(s, a) = R(s, a) + V (T (s, a)) (2)
V (s) = softmaxa Q(s, a) (3)

Here, s and a represent the human’s current state and
corresponding action, respectively, T (s, a) is the transition
function, and R(s, a) is the reward after executing action a
at the current state s. Eq. (2) and Eq. (3) are used to train
the motion predictor based on a set of training trajectories
with a reward function that also takes into account obstacle
locations. Ziebart et al. use the obtained Q-table to predict
the future destination of the trajectory observed so far as
explained in the following.

Let ζA→B denote the observed trajectory of the human
from the initial state A to the current state B and ζB→C
the future trajectory from B to the unknown destination C.
The probability P (dest C|ζA→B) of a certain destination C
given the observed trajectory ζA→B can then be computed
with Bayes’ rule, where the likelihood P (ζA→B |dest C)
intuitively depends on the ratio of the reward of ζA→B
and the expected value of ζB→C to the value of the whole
trajectory to the destination ζA→C :

P (dest C|ζA→B)
Bayes’
=

P (ζA→B |dest C)P (dest C)
P (ζA→B)

(4)

=
eR(ζA→B)+V (B→C)

eV (A→C) P (dest C)∑
D
eR(ζA→B)+V (B→D)

eV (A→D) P (dest D)
(5)

Here, D corresponds to a destination among the set of pos-
sible destinations according to the training trajectories. The
prior distribution P (dest D) is known from the training set1.
Furthermore, the reward of the trajectory R(ζ) is the sum of
all individual rewards of state-action pairs according to ζ:

R(ζ) =
∑

(s,a)∈ζ

R(s, a) (6)

and V (X → Y) denotes the softmax value function of the
trajectory from state X to state Y .

We can then compute the probability of the future trajec-
tory ζB→C to the unknown future destination C given the
so far observed trajectory ζA→B :

P (ζB→C |ζA→B)
= P (ζB→C |dest C)P (dest C|ζA→B) (7)

=
eR(ζB→C)

eV (B→C)
P (dest C|ζA→B) (8)

= eR(ζB→C)−V (B→C)P (dest C|ζA→B) (9)

The term P (dest C|ζA→B) is hereby computed using
Eq. (5). This posterior probability is used to weight the
conditional probability P (ζB→C |dest C) of the expected
future trajectory given the destination C.

In our implementation, we assume that the human can
move one step at a time step in any of the eight possible
directions corresponding to the neighbor cells or remain at

1When using a motion capture system, possible destinations can be
identified as places where the person frequently stays for a while without
moving much. The distribution P (dest D) can be learned by counting how
often the person moves between possible destinations and might depend on
the starting location.

the same state. Accordingly, our action space consists of nine
actions. We set the reward to be inversely proportional to the
distance from obstacles within a certain range of the human.

Thus, using the probability distribution about the future
trajectory, we can predict the position of the human at a
certain time step given its trajectory history. Note that since
there is uncertainty in the prediction, the robot does not know
the human’s destination in advance and, thus, cannot directly
plan a path towards it. Accordingly, we use the information
about possible destinations in our navigation framework and
learn optimal navigation actions as described in the following
section.

IV. LEARNING NAVIGATION ACTIONS

A. Reinforcement Learning

To model a problem as reinforcement learning task, one
needs to define a state space S that describes the relevant
aspects of the situation the agent encounters and an action
space A that represents the set of actions from which the
agent can choose according to its policy π : S → A. The
state of the agent at a time step st is transformed to the
new state st+1 after executing the action at according to the
transition function T : S × A → S , and the agent gets an
immediate reward rt ∈ R.

The learning process is iterated multiple times until con-
vergence is reached, where each iteration is called a learning
episode. A learning episode is considered complete when a
terminal state is reached at time T . During each learning
episode, the value of each state-action pair Qπ(s, a) fol-
lowing the policy π is updated according to the achieved
reward Rt with

Rt =

T∑
i=t+1

ri (10)

as follows [14]:

Qπ(st, at) = Eπ{Rt|st, at} (11)

Thus, Qπ(st, at) denotes the expected return of taking ac-
tion at in state st and following the policy π afterwards. The
optimal policy maximizes the expected return, which corre-
sponds to choosing always the action with the maximum Q-
value. To update the Q-values, we apply Sarsa reinforcement
learning:

Qπ(st, at)← Qπ(st, at)

+ α[rt+1 + γQπ(st+1, at+1)−Qπ(st, at)] (12)

Here, the parameters α and γ correspond to the step size and
the discounting factor, respectively. In our implementation,
we use a variant called Sarsa(λ) that looks several steps into
the future and considers the rewards of these future steps
to update Q(st, at) [15], unlike Sarsa which considers only
one-step forward. In this way, a more accurate estimate of
Rt can be obtained. Throughout the learning phase, we use
an ε-greedy action selection. This selection method chooses
the action with the highest Q-value with probability 1 − ε
and all non-greedy actions with equal probability.

B. State Space S

We use a discretized representation of the environment in
form of a grid map in which static obstacles are represented
as occupied cells. The state representation for reinforcement
learning includes the relative distance between the current
2D position of the human xht and the current 2D position
of the following robot xr

t at time t as well as the relative
distance between xr

t and the predicted position of the hu-
man xht+i after i further time steps

st =

[
xht − xrt

xht+i − xrt

]
. (13)

Here, we compute xht+i according to Eq. (9). We use relative
positions instead of global positions to reduce the learn-
ing problem. The corresponding state space is much more
compact than one that considers all possible combinations
of current and predicted global positions. As shown in the
experiments, this generalization works well in practice.

C. Action Set A and Q-Table

The action space consists of a set of discrete moving
actions in the eight neighbor cells in addition to standing
still. The Q-table computed by our framework contains
entries Q(s, a) for each state-action pair where s is defined
as in Eq. (13) and a is one of the nine navigation actions.

We assume that the human moves between different loca-
tions where it stays for a while and might need the help of
the robot. One of them is the starting position of the human
before moving to the next destination. Accordingly, we learn
an independent Q-table for each of these designated locations
within the map.

D. Reward R

We designed the reward function so as to combine both the
shortest path to the predicted human position as well as the
difference between the distance traveled so far by the human
and the traveled distance by the follower robot. The first term
aims at following the human, whereas the second term is
for preferring shorter paths during the task. Accordingly, we
define the intermediate reward rt at time t as follows

rt =

{
10, 000 if t = T

−distA?(xrt , xh
t+i) + (travht − trav r

t) otherwise,
(14)

where T is the final time step and distA∗ is a function
that applies the A* algorithm on the grid map to compute
the length of the shortest path between the current robot
position xrt and the predicted position of the human xht+i.
Furthermore, trav t refers to the distance traveled until time
step t. The final state with time step T is reached when the
robot is sufficiently close to the human after he has reached
the next destination, which is the case when the human stays
for a while close to a designated destination. The reward
function leads to the generation of efficient navigation actions
that minimize the cost of reaching the human’s destination.

(a) (b)

Fig. 2. Maps used for the experiments: (a) Environment with a fixed start
position and three possible destinations with overlapping trajectories, mak-
ing the prediction more difficult. (b) Environment with several designated
locations between which the human moves.

V. EXPERIMENTAL RESULTS

A. Environment Setup

We evaluated our approach in simulated and real-world
experiments in two environments each of the size of
4.8 m×3.6m. The first one contains three possible destina-
tions reachable with overlapping trajectories from an initial
position while the other one contains trajectories between
multiple designated locations (see Fig. 2). We used a map
resolution of 60 cm, which yields reasonable navigation
actions for the real robot with a diameter of 45 cm. Note
that even if the environment consists of 48 grid cells, the
size of the actual state space is much bigger since we do
not only consider the relative distance between the current
positions of the robot and the human but also the predicted
difference in a certain number of time steps (see Eq. (13)).

Currently, we assume perfect knowledge about the robot’s
and the human’s trajectory and that both are moving ap-
proximately with the same velocity, which only affects the
prediction.

B. Trajectory Generation for Training and Testing

We randomly generated human trajectories for both, the
training and test phases composed of straight line segments
of 25 cm length (in the future we will use real data ac-
quired with a motion capture system). The orientation of
the segments relative to the destination is chosen uniformly
from the interval [0◦, 60◦]. For the map in Fig. 2 (a), our
training set consists of 60 trajectories, 20 for each of the three
possible destinations. For the map in Fig. 2 (b), we generated
a training set consisting of 15 trajectories for each of the
possible combinations between the designated locations. For
testing, we used five randomly generated trajectories for each
motion class.

C. Parameters

During the learning of the Q-table, we used an initial
value of 0.4 for ε of the greedy action selection to allow for
exploring the state space and decreased the value to 0.2 after
a certain number of iterations. For the execution, we used a

value of 0.05, i.e., the robot chooses the action with the
highest Q-value with probability 0.95. The Q-tables for our
experiments were learned from a minimum of 12,000 learn-
ing episodes (learning was stopped after convergence). We
consider a learning episode as successful if the distance of the
robot to the human destination is smaller than 1.2 m within a
maximum number of 100 time steps, otherwise the episode
is aborted. We experimentally determined the value of 3 for i
for the prediction in Eq. (13) and Eq. (14) to work best with
the chosen map resolution of 60 cm.

In the learning episodes and test runs, we generated the
robot’s starting position randomly within a range of 60 cm
around the human’s initial position. In the test runs, we abort
the execution in case the robot does not reach the human
destination within 25 time steps after the human arrives there.

D. Evaluation Metrics

In order to evaluate our approach, we computed the saving
w.r.t. the path length by comparing the distance traveled
by the robot according to our learned navigation actions
to that of a naive following method, in which the robot
follows the shortest path to the position of the human at
each time step. Furthermore, we evaluated the completion
time of our approach to a ’wait-and-observe-first’ strategy in
which the robot waits until the human reaches its destination
and only then starts moving according to the shortest path
to the destination. To show statistical significance of our
results, we applied a statistical two-tailed paired t-test with
a significance level of α = 0.05.

E. Experiments in Simulation

We performed 250 runs for each test trajectory to alleviate
the randomness arising from the generation of the initial
position of the robot as well as the randomness involved in
the generation of the actions. As can be seen from Tab. I (first
and third row, first column), our approach significantly
outperforms the naive following strategy w.r.t. the trajectory
length in both environments. Note that in the environment
of Fig. 2 (b), in some cases the robot can directly predict
the correct navigation goal after one step and immediately
move there. Depending on the human’s and the robot’s start
location, the robot then reaches this destination faster than
the human.

Furthermore, we added a number of non goal-directed
trajectories to the test set (25%) of the environment in
Fig. 2 (a) to show the effectiveness of the robot behavior
generated by our learning framework and its ability to handle
unexpected trajectories. These trajectories were not included
in the training of the Q-table for the navigation actions. In
the corresponding runs, the human trajectory leads around
the obstacle in the left part of the map (similar to the
human’s trajectory in Fig. 5). This can be seen as the
case where the human moves to fetch some items and then
continues walking to its actual destination. If such scenarios
are included in the test set we even achieve an overall average
gain of 19.1% (see Tab. I second row, first column).

(a) (b)

Fig. 3. Experiment in which the human first makes a large detour before
walking towards his intended destination. (a) The robot does not follow
the human but waits first. (b) Only as the human continues moving in the
direction of the actual destination, the robot follows and, thus, avoids the
detour that would have resulted from closely following the human.

When comparing our approach to the ’wait-and-observe-
first’ strategy regarding completion time, we achieve an
average gain of 13.1% - 14.6% (Tab. I second column).

In 8% of the test runs, the robot was caught in local
minima and did not reach the destination within a fixed
time limit while choosing actions according to the Q-table.
The corresponding runs are not included in the evaluation.
Note that we applied only the Q-table for action selection
in our approach and did not combine it with moving on the
shortest path to the actual destination after the human arrived
there, which would be reasonable in practice and improve
the performance in some cases, in particular when facing
the local minimum problem mentioned above.

We performed an additional experiment to illustrate the
strength of our approach. Here, the human was only walking
to his final destination after performing a larger detour (see
Fig. 3 (a)). This unexpected behavior was correctly handled
by the robot as it did not follow the human but waited. Only
as the human continued his path towards the destination, the
robot started moving again (see Fig. 3 (b)). Thus, the robot
could avoid the large detour that would have resulted from
closely following the human.

F. Experiments with a Real Robot

We also carried out experiments with a real
robot (Robotino by Festo) to test the learned navigation
strategy. To detect the position of the human and localize
the robot, we used an external motion capture (MoCap)
system. We focused on the scenario where the trajectory
of the human does not directly lead to his/her destination.

TABLE I

GAIN IN TRAVELED DISTANCE AND COMPLETION TIME

Test trajectories of
environments

Gain
in distance

Gain
in time

Statistically
significant
(α = 0.05)

Dist. Time

Fig. 2 (a) Basic set 7.9% 13.1% Yes Yes
With cycles 19.1% 14.6% Yes Yes

Fig. 2 (b) Basic set 18.3% 14.2% Yes Yes

(a) (b)

(c) (d)

Fig. 4. (a) The human starts walking towards his (unknown) destination
and the robot executes navigation actions to follow him. (b) The human
does not move directly to his destination but walks in a cycle around an
object. (c) The robot behaving according to our learned policy ignores this
cycle and waits. (d) The human continues walking towards his destination,
followed by the robot.

(a) (b)

Fig. 5. Trajectories of the human and the robot corresponding to the
experiment shown in Fig. 4 recorded by the MoCap system. (a) The robot’s
trajectory is rather efficient, as the robot correctly predicts that the human
will continue moving to one of the destinations in the area on top and
therefore waits for the human half way. (b) Both human and robot resume
the path to the destination.

As shown in Fig. 4, the human performed an inefficient
trajectory by walking around the obstacle in the left part
instead of directly going to his/her goal location. As can
be seen, the follower robot ignored this cycle and waited
instead before proceeding to follow the human afterwards
to its intended navigation goal. The corresponding path (see
Fig. 5) is much shorter than the human’s trajectory.

VI. CONCLUSIONS

We developed an approach to generating foresighted
navigation behavior of an assistance robot. We consider
the scenario in which the human moves between differ-
ent designated locations where it might interact with the
robot. Thus, the task of the robot is to reach these places
while minimizing trajectory length and completion time.
Our framework relies on a learned prediction model for

the human’s motions that is used to reason about its future
trajectory and target destination. Based on that prediction and
the current robot position, we apply reinforcement learning
to generate the optimal navigation action for the robot. As
the experiments carried out in simulation and with a real
mobile robot demonstrate, our approach leads to foresighted
navigation behavior resulting in significantly shorter paths
and a significantly reduced completion time compared to
naive following strategies.

We are currently extending our system to use the robot’s
on-board sensors for people tracking, which will lead to
occlusions and uncertainty about the human’s position. So
the robot will also need to learn when to consider active
re-localization of the human based on its predicted motions.

REFERENCES

[1] L. Huang, “Control approach for tracking a moving target by a
wheeled mobile robot with limited velocities,” Control Theory &
Applications, IET, vol. 3, no. 12, pp. 1565–1577, 2009.

[2] I. Harmati and K. Skrzypczyk, “Robot team coordination for target
tracking using fuzzy logic controller in game theoretic framework,”
Robotics and Autonomous Systems, vol. 57, no. 1, pp. 75–86, 2009.

[3] T. P. Nascimento, A. P. Moreira, and A. G. Scolari Conceio, “Multi-
robot nonlinear model predictive formation control: Moving target and
target absence,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1502–1515, 2013.

[4] N. Pradhan, T. Burg, S. Birchfield, and U. Hasirci, “Indoor navigation
for mobile robots using predictive fields,” in Proc. of the American
Control Conference, 2013.

[5] S. Nishimura, H. Takemura, and H. Mizoguchi, “Development of
attachable modules for robotizing daily items – Person following
shopping cart robot,” in Proc. of the IEEE Int. Conf. on Robotics
and Biomimetics (ROBIO), 2007.

[6] E. Prassler, D. Bank, B. Kluge, and M. Hägele, “Key technologies in
robot assistants: Motion coordination between a human and a mobile
robot,” Transactions on Control, Automation and Systems Engineering,
vol. 4, no. 1, 2002.

[7] M. Kuderer and W. Burgard, “An approach to socially compliant leader
following for mobile robots,” in Social Robotics, ser. Lecture Notes in
Computer Science, M. Beetz, B. Johnston, and M.-A. Williams, Eds.,
vol. 8755. Springer International Publishing, 2014.

[8] Y. Morales, S. Satake, R. Huq, D. Glas, T. Kanda, and N. Hagita, “How
do people walk side-by-side? Using a computational model of human
behavior for a social robot,” in ACM/IEEE Int. Conf. on Human-Robot
Interaction, 2012.

[9] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning
motion patterns of people for compliant robot motion,” Int. Journal
of Robotics Research (IJRR), vol. 24, no. 1, 2005.

[10] C. Laugier, S. Petti, D. Vasquez, M. Yguel, T. Fraichard, and
O. Aycard, “Steps towards safe navigation in open and dynamic
environments,” in Autonomous Navigation in Dynamic Environments.
Springer, 2007, pp. 45–82.

[11] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.
Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based
prediction for pedestrians,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2009, pp. 3931–3936.

[12] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Continuous
real time POMCP to find-and-follow people by a humanoid service
robot,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2014.

[13] G. Tipaldi and K. Arras, “I want my coffee hot! learning to find people
under spatio-temporal constraints,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2011.

[14] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

[15] M. Wiering and J. Schmidhuber, “Fast online Q(λ),” Machine Learn-
ing, vol. 33, no. 1, pp. 105–115, October 1998.

