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Abstract— Robotic assistants designed to coexist and commu-
nicate with humans in the real world should be able to interact
with them in an intuitive way. This requires that the robots are
able to recognize typical gestures performed by humans such as
head shaking/nodding, hand waving, or pointing. In this paper,
we present a system that is able to spot and recognize complex,
parameterized gestures from monocular image sequences. To
represent people, we locate their faces and hands using trained
classifiers and track them over time. We use few, expressive
features extracted out of this compact representation as input to
hidden Markov models (HMMs). First, we segment gestures into
distinct phases and train HMMs for each phase separately. Then,
we construct composed HMMs, which consist of the individual
phase-HMMs. Once a specific phase is recognized, we estimate
the parameter of the current gesture, e.g., the target of a pointing
gesture. As we demonstrate in the experiments, our method is
able to robustly locate and track hands, despite of the fact that
they can take a large number of substantially different shapes.
Based on this, our system is able to reliably spot and recognize
a variety of complex, parameterized gestures.

I. INTRODUCTION

Whenever robots are designed to operate in human-
populated environments, they must be able to interact with
them in an intuitive way. Our humanoid robot (see Fig. 1) is
able to generate a variety of human-like arm and head gestures
that support its speech [1]. At former public demonstrations
we asked people who interacted with the robot to fill out ques-
tionnaires about their impression of the interaction capabilities
of the robot. We discovered that several people were confused
by the asymmetry between action generation and perception
since the robot’s visual perception of people was limited to
head position and size. To reduce this asymmetry and to enrich
its multimodal interaction capabilities, it is necessary that the
robot also recognizes gestures performed by humans. This
requires robust and accurate tracking of human body parts
as well as the ability to spot and recognize typical gestures in
order to infer non-verbal signals of attention and intention.

In this paper, we present a system that is able to spot and
recognize complex gestures from monocular image sequences.
We consider typical gestures performed with head and arms,
such as head shaking/nodding or hand waving as well as
parameterized gestures. Fig. 2 shows some examples.

We represent humans using their heads and hands. For
locating faces and hands in the images, we use the object
detection framework proposed by Viola and Jones [2] to train
reliable and fast classifiers. We use an adaptive skin color
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nteracts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.

Fig. 1. Our humanoid robot

(b)

Fig. 2. Snapshots of typical gestures: (a) waving, (b) indicating the size of
an object (parameterized), and (c) pointing to an object (parameterized). The
bounding boxes highlight detected faces and hands.

model (which is initially based on the detected face) and
constrain the search to skin-colored regions to speed-up and
to increase the robustness of the hand detection process.

We segment complex arm gestures into their three natural
phases and train hidden Markov models (HMMs) for the
individual phases. We then construct HMMs composed of the
individual phase-HMMs for one- and two-handed gestures as
well as for head gestures.

Our approach proceeds in three stages. First, we locate faces
and hands in the images and update a probabilistic belief which
tracks them over time. Second, we extract features from this
compact representation of humans. Finally, these features are
used as input to the HMMs. Our system recognizes a variety of
complex gestures and allows for the estimation of parameters
for general gestures once a specific phase is recognized. In
contrast to that, existing techniques for parameter estimation
of gestures either concentrate on pointing gestures only (e.g.,
[3], [4], [S]) or rely on the assumption that the whole gesture
can be observed [6].

The contribution of our work is a robust and fast ges-
ture recognition method that relies on monocular image se-
quences (no stereo). In contrast to previous approaches relying
on monocular data (e.g., [7], [8], [9]), our system works
under realistic settings such as varying and difficult lighting



conditions, multiple people, and cluttered background. On a
notebook computer, we achieve a frame rate of 20 fps and are
able to spot gestures as well as to recognize them, i.e., our
system distinguishes between previously learned gestures and
irrelevant or unconscious movements.

This paper is organized as follows. The next section reviews
related work. Section III describes training and application
of the hand classifiers. Section IV details our technique to
track people. Section V explains the features selection process
and how HMMs are trained and used for gesture recognition.
Finally, Section VI presents the experimental results.

II. RELATED WORK

Several approaches to visual gesture or activity recognition
have already been presented. Yamato et al. [10] apply discrete
HMMs to recognize tennis strokes from monocular images. As
features, they use simply the number of pixels corresponding
to the human pose and apply a vector-quantization. Rigoll et
al. [8] proposed to recognize gestures from low-resolution
grey-scale images using continuous HMMs. To compute a
7-dimensional feature vector, they describe the region cor-
responding to the moving body parts using statistics such
as image moments. Montero and Sucar [9] use a ceiling-
mounted camera and apply a back-projection using a given
color histogram to locate a hand on a desk. Given features
based on the 2D trajectory of the hand, the authors apply a
HMM to recognize typical office movements such as writing,
using the mouse, etc. Li ef al. [7] presented an approach to
recognizing manipulative actions via a hierarchical HMM. In
addition to the hand trajectory, objects in the vicinity of the
hand serve as observations in order to be able to distinguish
between the different activities. It should be noted that in
contrast to all these approaches, our gesture recognition system
works under realistic settings such as varying and difficult
lighting conditions and cluttered background.

The work presented by Nickel and Stiefelhagen [4] concen-
trates on pointing gesture recognition using a stereo camera
system. They use heuristics to locate heads and hands by
combining color and range information. The authors model the
pointing gestures using three individual phase-HMMs. As soon
as the hold phase is recognized, the target is estimated using
the 3D positions of head and hand. In contrast to this system,
ours is not restricted to one single gesture. Instead, we are able
to recognize a variety of gestures. Furthermore, Nickel and
Stiefelhagen apply a time-consuming analysis to estimate the
end of a gesture phase which can more efficiently done using
the Viterbi algorithm. Just et al. [11] consider the problem
of recognizing one- and two-handed gestures given 3D trajec-
tories. The authors do not tackle the problem of recognizing
parametric gestures. An interesting extension to HMMs was
introduced by Wilson and Bobick [6]. To extract information
carried by parameterized gestures, the corresponding parame-
ter is explicitly integrated into a parametric HMM (PHMM).
Using PHMMs, the parameter can be estimated with a high
accuracy given an entire sequence. However, it is unclear how
PHMMs perform in case only part of the gesture can be

observed. Our approach is able to estimate the parameter of the
gesture as soon as the corresponding hold phase is recognized.

Martin et al. [3] use a combination of Garbor filters and neu-
ral function approximators to estimate the target of pointing
gestures from monocular images. They only analyze the static
part of a gesture. Irie et al. [5] proposed to control devices in
an intelligent room equipped with two cameras by hand and
finger gestures using heuristics to determine the hand motion.

The problem of whole body gesture recognition from depth
images or using a motion capture system has been addressed
by several researchers (e.g., [12], [13]). The proposed methods
need a high-dimensional feature vector consisting of joint
angles as input to HMMs. Thus, a high number of training
sequences is needed. The same holds for approaches which
mainly focus on the reproduction of whole body, respectively,
arm movements using learned HMMs (e.g.,[14], [15], [16]).

Finally, we would like to review related work regarding
hand detection, which is an inherently difficult task. Kolsch
and Turk [17] also applied the object detection framework
introduced by Viola and Jones [2] to detect different hand
postures. They concentrate on few distinctive hand shapes
which are frequency-analyzed for good class separation ability.
Similarly, Chen et al. [18] trained classifiers for four different
hand postures. Ong and Bowden [19] proposed training of
a two-layer classifier tree for hand shape detection where a
database of hand images is clustered into sets of similar hands
according to a distance metric based on shape context. In
contrast to these methods, our system is able to detect and
track hands with a large number of substantially different
shapes and to furthermore determine whether a hand is a left
or right one. Our system works reliably even under difficult
background and lighting conditions.

III. HAND DETECTION
A. Training Classifiers

Hands can take the highly various shapes as they are
articulated with more than 20 degrees of freedom and they
appear arbitrarily rotated, in-plane as well as out-of-plane. For
training robust hand classifiers, we apply the object detection
approach proposed by Viola and Jones [2] which is based
on AdaBoost. We use Haar-like features [20] to construct the
classifiers, i.e., each feature is computed based on the sum of
pixel values in rectangular regions in grey-scale images. The
idea is to use information about the relative darkness between
different regions.

B. Training Data

We train two kinds of classifiers: a generic hand classifier
that detects hands and rejects non-hands and a specific hand
classifier that is able to discriminate right hands from left ones,
given there is a hand. The size of the positive samples is
chosen so as to include contextual information that might be
useful for the classification (see Fig. 3).

Since in the detection process, we only consider skin-
colored regions (see next subsection), only these regions
are considered during acquisition of negative samples. The



Fig. 3.

Positive example patches for training hand classifiers.

negative training examples of the specific classifier consist
only of images patches containing the contralateral hand as
negative samples. In this way, AdaBoost is forced to select
features which best discriminate left and right hands.

C. Constraining the Search and Applying the Classifiers

To support the hand detection process, we perform a
preprocessing step and incorporate information derived from
the face detection result. We use the classifiers provided
by Intel’s OpenCV library [21] to detect frontal and profile
faces. By means of color analysis of the respective image
patch containing the face, the skin-color of the person can
be estimated. This information can then be used to identify
candidate hand regions in the image. The advantage of this
approach is two-fold. First, we can constrain the search for
hands to regions containing the same color as the face and thus
speed-up the search. Second, objects with similar structure but
with different color are excluded and thus the false detection
rate is reduced. Once the hands are detected, we start updating
the skin color model with information from the hand regions.

Our hand detection system proceeds in two stages. First, the
generic hand detector is applied. In case it succeeds, the right
hand classifier is applied twice, once in the original image and
once in the flipped one. Four cases are possible:

1) No success in both images: Return generic hand.

2) Success in original image: Return right hand.

3) Success in flipped image: Return left hand.

4) Success in both images: Return left/right depending on
the output scores of the classifiers.

IV. REPRESENTATION AND TRACKING OF HUMANS

We represent humans using their heads and hands. We
maintain a probabilistic belief about the existence of people
and the positions of their faces and hands over time. This
way, our system improves robustness since it can deal with
false detections and is not restricted to a single person.

We proceed as follows. We first run the face detector in
the images. Before we can update the Kalman filters tracking
the faces, we have to solve the data association problem, i.e.,
we must determine which observation corresponds to which
already tracked face and which observation belongs to a new
face. We use a distance-based cost function and apply the
Hungarian method [22] to determine the optimal mapping
from current observations to faces given this cost function.

To deal with false classifications, we maintain for each
face the probability that it really exists, i.e., that a person
is there. We follow the approach presented by Bennewitz et
al. [23] to update this probability by applying a recursive
update scheme. This update scheme determines the probability

of the existence of a person given a sequence of positive and/or
negative observations (face detections) assigned to it

P(f | 214) = 1
1-P(flz) P(f) 1=P(f|zu-1)]
[1 TRl 1-P() PG e |

Here, f denotes the existence of a face, z; is the observa-
tion (face detected/not detected) at time ¢, and zq.; refers to
the observation sequence up to time ¢. We experimentally
determined values for P(f | z = det) that a face exists if it is
detected in the image and P(f | z = —det) that a face exists
if it is not detected. If the probability of a face drops below a
certain threshold, the person is deleted from the belief.

Additionally, we track the 3D head pose of people. We use
an appearance-based approach [24] which locates distinctive
facial features. The positions of the features within the face
bounding box serve as input to a neural network which
computes the three Euler angles of rotation around the neck.

For the hands, we maintain two kinds of probabilities. First,
we also compute the existence probability and, second, we
compute for each hand the probability that it is a left or right
hand given the results of the specific classifier. The information
about the laterality of hands is important to keep track of them
in case hands are crossing each other.

Again, we first have to solve the data association problem.
The costs of an assignment for an observed and a tracked
hand depend on the laterality costs ¢+, Which considers the
probability that a hand is a left or right one, in combination
with the distance between the position of the detected hand
and the predicted position of the already tracked hand using a
weighted sum. ¢4, is defined as

[P(h’”|h’ 2t = h") - Ppey(R"|h, 21.0-1)+
—1
P(R! R, 2 = hY) - Pper(hl|hy z10-0)] . (2)
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Here, h" and h! denote a right/left hand and the observations z;
are either left hand or right hand. After determining the
assignment, the existence probability P(h | z1.;) and the
probability that a hand is a right or left one P(h"/! | h,21.;)
are updated using the recursive formula described above.
The final step is to assign hands to people. To do so, we
first partition the set of tracked hands into left and right hands
according to their most likely probability. Then, we assign the
sets of left and right hands to the tracked people individually.
To avoid that hands change their assignment to another person
in case people come close to each other, we consider the
history of assignments in the cost function. For each hand
in the belief, we maintain a histogram in which each bin
stores how often the hand has been assigned to person :. In
this way, we maintain an assignment of a particular hand to a
particular person over time. The costs ¢;; of the assignment of
the tracked hand ¢ to person j are then computed as follows

1
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Fig. 4. Composed HMMs consisting of the individual phase-HMMs. The first two for one- and two-handed gestures, and the right one for head gestures.
The start and end states of the HMMs as well as the branching points are non-emitting.

Here, hist(h',q;) denotes the normalized bin value for per-
son j of hand i. cq;5¢ (h*, gj) is proportional to the distance to
person j or is maximum if the hand is too far away.

V. RECOGNIZING COMPLEX, PARAMETERIZED GESTURES

We currently consider six different types of gestures:

1) Waving: One-handed gesture.

2) Pointing: Parametric, one-handed gesture.

3) Thisbig: This parametric, two-handed gesture is carried
out to indicate the size of an object.

4) Dunno: This two-handed gesture is used to express
ignorance (informal short for don’t know).

5) Head shaking.

6) Head nodding.

A. Gesture Modeling

To model the complex arm gestures Waving, Pointing, and
Thisbig, we use three phases: the preparation phase which
is an initial movement before the main gesture, the hold
phase which characterizes the gesture, and the retraction phase
in which the hand moves back to a resting position. Our
main motivation behind this segmentation is that once the
hold phase is recognized, the parameters of Pointing and
Thisbig can be estimated. The less complex gestures Dunno
and Head shaking/nodding are modeled monolithically. We
train individual HMMs for each phase of a gesture separately,
i.e., we train 12 HMMs for the gestures/gesture phases.

We use continuous left-right HMMs with 3-5 (non-skip)
states in addition to the non-emitting start and end states.
The actual number of states depends on the average length
of the gesture phases. As output distribution we use a mixture
of two Gaussians. We apply Viterbi training and the Baum-
Welch algorithm to estimate for a HMM A the transition
probabilities af‘j between states 7 and j and the observation
probabilities b;‘(o) for a state j given an observation o.

To be able to identify movements not corresponding to
any learned gesture, we train an additional model. Here, we
follow the approach presented by Yang et al. [13] and build
a HMM by copying all states from all trained models and
arrange them in a fully connected HMM with smoothed output
probabilities. The transition probabilities in this no_gesture
model are defined as a;; = (1 — a;‘j) . m for i # j
and a;; = a); else. Here, a?; is the self-transition probability
of state j which originally belongs to the HMM .

B. Gesture Recognition via Composed HMMs

The gesture phases appear in a specific order which has to
be considered during recognition. Fig. 4 illustrates the HMM

topology for one- and two-handed gestures as well as for head
gestures. As indicated by the arrow, the hold phase can occur
several times. The transition probability from the end state of
a phase-HMM to the start state of the same HMM is set equal
to the transition probability of going to the next phase-HMM
in the network.

To identify the most likely gesture given such a composed
HMM, we apply the Viterbi algorithm [25]. The Viterbi algo-
rithm computes the state sequence with maximum likelihood
given an observation sequence O1.7 = o01,...,0p. For the
HMM A, the likelihood of the best state sequence of length ¢
ending in state j is recursively defined as

5:(j) = max (5t,1(i)a’-\-b’-\(ot),61(j):w;‘b?(ol).(4)

1<i<NA g
Here, a* and b* are the parameters of A\, N* is the number of
states, and 7rj)-‘ specifies the initial state distribution. The algo-

rithm terminates with the computation of the most likely path
2% (which is found via backtracking) and its likelihood P*

P* = max 0p(i). )

1<i<NA
In theory, it would be possible to model all gestures in one
single HMM. However, to reduce the amount of necessary
training data and to improve recognition accuracy, we use
separate HMMs and extract individual input features. To dis-
tinguish between one- and two-handed gestures, we consider
the two-handed HMM only when the HMMs for the right and
left hand report the same most-likely gesture. This heuristics
is applicable since all our two-handed gestures are symmetric.

C. Input Features

As input to the HMMs, we use few, expressive features
extracted out of the trajectories of head and hands. First, we
transform the position of the hands into coordinates relative to
the head position and normalize the coordinates with respect
to the size of the face bounding box. For one-handed gestures,
we use polar coordinates in the image with the head as origin
and the velocity. Accordingly, the feature vector f,,,. is defined
as f,,. = (1, ¢,v). Here, r is the distance of the hand to the
head, ¢ is the angle, and v is the velocity.

Since the two-handed gestures we consider are symmet-
ric, we measure the difference in x/y-direction of their left
and right hand coordinates (z/",y!/") at time ¢ in the fea-
tures d, = |z!| — |z}| and d, = y. — y;. Furthermore,
we record the sum of the y-coordinates of the hands in the
feature y'" = y! + y/ and consider the change of the hand



coordinates in x-direction
Axle” = |zi| = |z | + |2} =[]y (6)

As a final feature, we consider the velocities of the hands v!" =
vi + vy. Thus, the feature vector f;,, is defined as

frwo = (dus dy,y"", Az'a” 0"). Q)

The head gestures nodding and shaking are described by a
feature vector f}.,q which consists of the three Euler angles
of rotation roll, pitch, and yaw as well as their velocities

fread = (67,607,607, 0% 0% o). ®)

D. Estimating Parameters of Gestures

Currently, we consider two parameterized gestures: Thisbig
and Pointing. The corresponding parameters are estimated
during the hold phase of the respective gesture. For Thisbig,
the estimation is done straightforwardly using the tangent
function and a learned mapping to estimate the distance of
the person to the camera given the size of the bounding box
of the face.

For the estimation of pointing targets, we use the three
rotation angles of the head pose. We assume that people are
looking to the object of interest they want to draw the attention
to and that the head pose coincides with the gaze direction.
Furthermore, we assume the 3D positions of potential pointing
targets to be known. First, we estimate the 3D position of the
head using the above mentioned mapping from bounding box
size to distance. Starting from that position, we construct a
straight line in direction of the roll, pitch, and yaw angle of
the head pose. Finally, we determine the object which has the
closest distance to that line.

VI. EXPERIMENTAL RESULTS

We performed a series of experiments in order to evaluate
our approach. To collect training data, we asked five different
people to perform gestures standing frontal in a distance of 1-
2.5m to the camera. We chose two different locations, different
lighting conditions, and different backgrounds (see Fig. 2).
We recorded and processed the videos with a rate of 20fps
and used a resolution of 640 x 480 pixel. We had a database
consisting of 75 samples per gesture which we manually
labeled, i.e., we marked the start and the end of each gesture as
well as the beginning and end of the hold phase. For training
and testing our hand detection system, we labeled the hands
in a set of images. We used 5000 image patches containing
hands for training the classifiers.

A. Hand Detection

First, we evaluated the performance of our hand detection
system. In this experiment, we evaluated solely the ability of
detecting hands using our system described in Sec. III (without
the tracker and the belief). The results are summarized in
Tab. I. The distance to the true (hand-labeled) position is
measured in pixels. A detection rate of over 80% is sufficient
as input to our belief to robustly track the hands. Also the
ability to distinguish between left and right hands with a

TABLE I
PERFORMANCE OF OUR HAND DETECTORS.

Detection rate  False alarm rate  Avg. dist.
Generic detector 81.25 0.10 2.89
Specific detector 89.50 5.56 -
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Fig. 5. Number of frames after which the most likely hypothesis is the

correct gesture.

detection rate of almost 90% and a false alarm rate of 5%
is highly satisfactory.

B. Gesture Recognition

The following experiment is designed to evaluate the per-
formance of our gesture recognition system. We computed the
Viterbi path in the composed HMMs at each time step and
counted how often the most likely hypothesis corresponded to
the true gesture. Fig. 5 shows the results for all six gestures.
The gestures could be reliably recognized after processing only
few frames. Nodding seems to be most difficult to recognize
because sometimes people barely move their head. Rarely, it
happens that Thisbig is classified as Dunno.

To better evaluate the ability of our HMMs to distinguish
arm gestures, we performed experiments in which we com-
puted for a given observation sequence the Viterbi path and
its likelihood for all individual gesture HMMs consisting of
the corresponding phase-HMMs (i.e., we did not use the
fully composed HMMs here). We then computed the joint
probability P(g;, gr, grwo) of the gesture g; of the left, the
gesture g, of the right hand, and the two-handed gesture gy,-

Fig. 6 plots the evolution of the probabilities of the ges-
tures over time for two sequences in which a person waved
with the left hand and (top image) and performed a Dunno
gesture (bottom image). In the beginning, the person was not
performing any meaningful gesture and, thus, the no_gesture
model had the highest probability. Afterwards, the probability
of the correct gesture increased.

C. Parameter Estimation

Finally, we asked people to point to predefined targets. We
positioned eight different targets within a range of 1.5m to the
camera at different heights. The hold phase of all 66 pointing
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Fig. 6. Evolution of the probabilities of the gestures over time for waving
with the left hand (top image) and Dunno (bottom image).

gestures was identified and the correct target was estimated in
80% of all cases.

Second, we asked people to indicate the size of objects. We
told them to indicate the sizes 25cm, 50cm, 100cm, and 150cm
and estimated the parameter in the hold phase. We performed
32 experiments and counted the nearest neighbor class of each
estimate. Our system was able to determine the correct class
in 94% of all cases.

VII. CONCLUSIONS

We presented an approach to robustly recognize typical
gestures performed with the head and the arms such as nodding
or pointing from monocular vision. We use trained classifiers
in combination with an adaptive skin color model to reliably
detect faces and hands. We segment complex gestures into
three phases and train HMMs for each phase separately given
few, expressive features. We then construct HMMs composed
of the individual phase-HMMs. Whenever a certain phase is
recognized, we can estimate the parameter of a gesture, e.g.,
the target of a pointing gesture.

Our approach has been implemented and evaluated on a
humanoid robot. As the experiments demonstrate, our system
works under realistic settings and is able to reliably spot and
recognize gestures. Gesture recognition is not restricted to peo-
ple whose gestures were collected during the training phase.
However, it is assumed that the people perform the individual
gestures sufficiently similar to those observed during training,
which is the case for the class of gestures we consider.
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