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Abstract— Next-best-view algorithms are commonly used for
covering known scenes, for example in search, maintenance,
and mapping tasks. In this paper, we consider the problem of
planning a strategy for covering articulated environments where
the robot also has to manipulate objects to inspect obstructed
areas. This problem is particularly challenging due to the many
degrees of freedom resulting from the articulation. We propose
to exploit graphics processing units present in many embedded
devices to parallelize the computations of a greedy next-best-view
approach. We implemented algorithms for costmap computation,
path planning, as well as simulation and evaluation of viewpoint
candidates in OpenGL for Embedded Systems and benchmarked
the implementations on multiple device classes ranging from
smartphones to multi-GPU servers. We introduce a heuristic for
estimating a utility map from images rendered with strategically
placed spherical cameras and show in simulation experiments
that robots can successfully explore complex articulated scenes
with our system.

I. INTRODUCTION

Many tasks of service robots involve covering a known envi-
ronment with the robot’s sensor, for example when searching
for an object, patrolling a building, or executing maintenance
and inspection tasks. In home and office environments, such
tasks often require that the robot actively manipulates objects
to inspect their contents, for example open cupboards, drawers,
and dishwashers, or move furniture aside to observe occluded
areas. In this paper, we propose an information gain-based
strategy for covering an environment with articulated objects
that the robot can manipulate. We assume that the robot
already has a model of the environment, for example a CAD
model provided by the user or a 3D map recorded with a
SLAM system, as well as user-defined regions of interest that
the robot shall cover and knowledge about how to manipulate
the articulated objects in the scene.

This coverage problem is hard even for static scenes, as
well-known NP-hard problems such as the art gallery problem
and the set coverage problem can be reduced to coverage of
known scenes. Considering articulated objects adds even more
degrees of freedom, making it infeasible to solve the planning
problem by exhaustive search. While several approaches
for covering known scenes exist in the literature, including
sampling-based and probabilistic techniques, these methods
mostly consider only static scenes due to the high complexity
of the planning problem.

In this paper, we propose a greedy next-best-view approach
that selects the next viewpoint by maximizing the expected
utility, which trades off the costs for the robot navigating to
the viewpoint and the expected information gain. Estimating
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Fig. 1. Nao inspecting a kitchen environment. The robot’s task is to search
for an object in the user-defined regions of interest marked in red. Kitchen
model based on [1].

this utility function contains several subproblems. First, we
define the information gain as the size of the newly observed
portion of the region of interest in the camera image, hence
our algorithm needs to render a virtual camera view from each
potential view pose. Second, in the navigation cost function,
we need to consider that the robot has to keep a safety
clearance to obstacles, so we follow the popular approach
of computing an inflation cost map. Third, determining the
costs for navigating to viewpoint candidates includes solving
a single-source shortest path problem. All these problems
are highly parallelizable. Hence, we propose to exploit the
computer’s graphics processing unit (GPU) to parallelize
the workload for solving the subproblems, which allows us
to compute utility maps for a large number of articulation
configurations in a reasonable amount of time, making the
planning problem more tractable.

Fast GPUs are widespread and due to the popularity of deep
learning algorithms their power and availability will likely
increase even more in the future. In the literature, algorithms
for some of the mentioned subproblems have already been suc-
cessfully demonstrated on general-purpose GPUs (GPGPUs)
that support high-level frameworks such as CUDA, OpenCL,
or ROCm. Variations of Dijkstra’s shortest path algorithm,
for example, have been implemented on CUDA [2]. GPGPU
approaches, however, need high-end graphics cards. Embed-
ded systems such as robots, smartphones, and single-board
computers often do have GPUs, but only provide a subset
of functions needed for their original purpose of graphics
processing. To leverage the computing power of embedded
systems GPUs, we formulate all algorithms as rendering
problems and implement them in OpenGL for Embedded
Systems (OpenGL ES), which is an open standard and widely
supported across platforms.



There are three main contributions of this paper: First, we
adapt the jump flood algorithm for computing cost inflation
maps, the Bellman-Ford algorithm for shortest path planning,
and a view simulation algorithm for estimating the information
gain for being solved with an OpenGL ES graphics pipeline.
We show optimizations for increasing the throughput of the
algorithms and make use of modern OpenGL features such
as transform buffer feedback and random image access. We
benchmark the algorithms on multiple device classes ranging
from smartphones to multi-GPU servers.

Second, we introduce a heuristic for estimating a utility map
based on rendering the scene with virtual spherical panorama
cameras placed strategically at the edge of articulated objects
and compare the result with a ground-truth utility map
obtained by exhaustive sampling.

Third, we integrate the algorithms and the heuristic into
a system for covering an articulated scene and show in
simulation experiments how a simulated robot successfully
explores home environments such as the kitchen environment
in Fig. 1.

The source code of our implementation is available at
https://www.hrl.uni-bonn.de/gpu-coverage.

II. RELATED WORK

The optimization problem of finding the smallest set of
viewing points for observing a known environment has been
formulated as the art gallery problem, which is known to
be NP-hard and APX-hard even in 2D environments [3].
After determining the optimal view points, computing the
shortest tour visiting those view points is an instance of
the traveling salesman problem, which is also NP-hard. Due
to the high complexity of the problem, exact solutions are
out of reach. Hence, most approaches in the literature resort
to iterative, greedy next-best-view algorithms. Bissmarck et
al. [4] provide an overview and run-time comparison for
existing next-best-view solutions. These algorithms, including
newer probabilistic formulations of the information gain
estimation problem [5], are designed for CPUs. In this paper,
we propose to leverage the GPU to accelerate the search for
the next-best-view candidates.

Dornhege et al. [6] use sampling and raycasting in an
octree environment representation to generate a larger number
of viewpoint candidates with high utility and apply set
coverage optimization to minimize the number of viewpoints.
A traveling salesman planner then calculates the shortest
tour. As sampling and raycasting are particularly expensive
operations, we propose to calculate utility maps by rendering
on GPUs instead to improve performance. While we use a
greedy, iterative scheme to compute the tour from viewpoints,
integrating high-level symbolic planning could be integrated
in future work to optimize the tours.

In our previous work [7], we focused on planning view-
points for covering a known environment with a humanoid
robot. Querying inverse reachability maps while searching
for next-best-views allowed us to exploit the mobility of
humanoid robots by bending over to peek into boxes or
squatting down to look under tables. In the current paper,

we present an approach for manipulating articulated objects
for inspecting the contents of containers. Both approaches
are complementary and will be combined in the future to
leverage the full potential of humanoids.

To the best of our knowledge, there are no existing
algorithms for calculating exploration or coverage tours in
environments with articulated objects that the robot has to
actively manipulate.

There are several approaches for solving navigation prob-
lems on GPGPUs, for example for path planning with
Dijkstra’s algorithm [2], the Bellman-Ford algorithm with
bucketing [8], parallel breadth-first search [9], or potential
fields [10]. These algorithms, however, need GPGPU frame-
works such as CUDA. In our work, by contrast, we limit
GPU usage to the embedded systems subset of OpenGL
that is more widespread and cross-platform. Camporesi and
Kallmann [11] also use OpenGL GPU shaders to compute
shortest paths based on shortest path trees. In contrast to
their approach, our approach is not restricted to 2D polygonal
input data, but can use any renderable scene.

III. PROBLEM FORMULATION

In this paper, we consider the problem of covering user-
defined regions of interest with a robot’s sensor. We assume
that the robot already has a renderable 3D model of the
environment, either provided by the user or previously
acquired using a SLAM approach and that the model contains
a mechanism for moving the articulated objects. In our
implementation, we represent the scene as a Collada model
and the articulation mechanisms as bone animations. Each
possible pose of an articulated object is mapped to a position
variable p ∈ [0, 1]. For a sliding door, for example, p = 0
means that the door is closed and p = 1 means that the door
is fully open. For movable furniture, p indicates the position
of the piece of furniture along a defined path.

Let A be the set of articulation objects contained in the
scene. Each articulation object a ∈ A is represented as
a = (p0, c), where p0 ∈ [0, 1] is the initial state of the
articulated object and c (pi−1, pi) is a cost function returning
the costs for moving the articulated object from position pi−1
to pi.

We assume that the user defines the robot’s task by
specifying one or more regions of interest R that the robot
should cover. In our implementation, we represent the regions
of interest as textured objects with a designated color, marked
in red in the figures throughout this paper. The algorithm
then keeps track of observed portions of R by marking them
in a different designated color (green in this paper).

We also assume that the scene model contains one or more
transparent surfaces C representing all locations where the
robot’s camera can be placed. For mobile robots with cameras
mounted on the base these surfaces will typically be planes
parallel to the ground, whereas for arm-like robots sphere
surfaces can be used.

The goal of our approach is to find a sequence s1, s2, . . . of
elements si =

(
vi, p

1
i , . . . , p

|A|
i

)
consisting of viewpoints vi
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and articulation positions pji with low costs from where the
robot can see as much as possible of the defined regions of
interest. We define the costs as

cost(si) = infl(vi) + dist(vi−1, vi) +

|A|∑
a=1

c(pai−1, p
a
i ), (1)

where infl(vi) are costs exponentially decaying with the
distance to the nearest obstacle following the commonly used
inflation costmap approach, dist(vi−1, vi) is the shortest path
distance from the robot’s current position vi−1 to the new
viewpoint vi, with v0 designating the robot’s initial position,
and c are the costs for manipulating the articulated objects
as defined above. In a single timestep, multiple articulation
objects may be moved, but typically only one articulation
object has to be changed to uncover a region of interest.

Finally, we define the information gain IG(v) of visiting a
camera viewpoint v as the number of texels of the region of
interest R that are visible from v and have not been observed
before. The goal of our approach is then to maximize the
utility function

U(si) = α · IG(vi)− β · cost(si) (2)

to iteratively determine the next best view. The coefficients
α, β trade off between the conflicting optimization goals of
the required runtime and the completeness of the coverage
and have to be adapted to the robot’s task priorities. If
the highest utility of all viewpoint candidates drops below
zero, the algorithm ends, potentially leaving regions with low
information gain and high costs unexplored.

For determining a sequence of viewpoints, several online
and offline approaches can be used and the optimal choice
depends on the robot’s task. If the task requires full coverage
as in mapping and inspection tasks, a cost minimizing planner
such as a traveling salesman problem solver should be used. In
this paper, however, we consider an object search task where
it makes sense to start with panoramic view points where
large parts of the environment are visible, as it is likely that
the object can be seen from these view points and the search
can be completed early. Hence, we choose a utility-based
greedy approach for our scenario. For a detailed comparison
and benchmark of different planning algorithms in exploration
and coverage contexts see the survey by Dornhege et al. [6].

IV. GPU ALGORITHMS

We tailor our algorithms to GPUs of embedded systems,
hence we implement our approach in OpenGL for Embedded
Systems version 3.2, which is an open standard and widely
supported on many platforms.

A. Properties of the Graphics Pipeline

OpenGL defines a pipeline of shaders. Shaders are simple
programs that the GPU executes either for each vertex or for
each pixel. The pipeline stages relevant for this work are:

1) The vertex shader takes one vertex of the scene mesh
at a time in world coordinates and transforms the
coordinates to screen coordinates by multiplying with
camera and projection matrices.

2) The geometry shader takes one primitive of the scene
mesh at a time (i.e., a point, line, or triangle) and
outputs an arbitrary number of primitives of the same
type. This mechanism can be used to manipulate the
geometry of scene parts or to send multiple copies of
scene parts to subsequent stages.

3) The rasterizer converts geometric primitives to a set
of pixels and interpolates vertex attributes such as
color and texture coordinates. The combined data for
generating an output pixel is called fragment.

4) The fragment shader takes the fragment data for one
pixel at a time and computes the final output color of
the pixel. The fragment shader can neither modify the
pixel position, nor consider neighboring pixels.

After the fragment shader, the GPU optionally performs a
depth test that ensures that a fragment only overwrites a
previously written pixel if the new fragment’s depth at the
pixel location is closer to the camera than the previously
written fragment’s depth, thus solving the z ordering problem.
If the fragment shader promises not to modify the depth value,
the depth test can be performed already after the rasterizer
in a technique called early depth testing.

All shaders can perform additional work, e.g., reading and
writing to textures or passing variables to other pipeline stages.
The performance gain that GPUs offer is mainly achieved by
running the shader programs in parallel for multiple vertices
or pixels using Single Instruction Multiple Data (SIMD)
architectures. Considering the special architecture of GPUs,
we followed these design guidelines:
• SIMD instructions by definition require that the same

instruction is executed for all data. Branching into if/else
constructs reduces the possibilities for parallelization,
hence branching should be avoided where possible.
While lazy evaluation paradigms speed up sequential
computations, the overhead of computing unneeded data
with SIMD might be smaller than branching based on
whether or not the data is needed.

• The GPU processes the pipeline asynchronously. The
graphics driver keeps the pipeline filled with about
three next instructions for the GPU. Reading back data
from the GPU to the CPU may introduce synchro-
nization points that flush the pipeline. Following best
practices [12], [13], [14], our GPU algorithms write to
ring buffers that the CPU reads back with a delay of
three frames, allowing the GPU to continue writing the
next frame to a different buffer while data is transferred
from an older buffer.

• In our implementation, we reduce data transfer between
CPU and GPU to the minimum. All intermediate results
are held on the GPU and only the final results are
transferred to the CPU through a ring buffer.

B. Costmap Computation

For safe navigation, robots need to keep a safety clearance
from obstacles. A commonly used approach (e.g., imple-
mented in the ROS navigation stack [15]) is to create an
occupancy grid map indicating the obstacles and free space



Algorithm 1: Costmap computation of a n× n gridmap

1: // Initialization
2: render obstacles
3: for all obstacle fragments p do in parallel:
4: colorp ← encode(coordinates of p)
5: // Jump Flood Algorithm
6: for all i ∈ {1, . . . , log(n)} do:
7: s← 2log(n)−i

8: for all map pixels p do in parallel:
9: for q ∈ {p+ (x, y) | x, y ∈ {−s, 0, s}} do:

10: if |decode(q)− p| < |decode(p)− p| then
11: colorp ← colorq
12: // Compute cost map
13: for all map pixels do:
14: compute distance to color-coded cell coordinate
15: compute cost value and write to output

and to “inflate” the size of the obstacles by the safety margin.
In a costmap, the costs for all cells inside the inflation radius
around obstacles are set to infinity or a high constant. To
get smoother paths around obstacles, the cost function is
often modeled as exponentially decaying from inflation edges
towards free space so that the robot can get close to objects
if necessary, but gets an incentive to stay further away.

For computing both the inflation cells and the decay
function, the distance of each cell to the nearest obstacle
is required. We use the jump flood algorithm (JFA) [16]
to compute a Voronoi diagram where each cell contains
the coordinates of the nearest occupied cell, which can
directly be converted to a distance transform map. For a
map of size n × n, the algorithm needs one shader pass
for initialization, log n shader passes for propagating the
coordinates of the nearest obstacles, and one shader pass
to compute the Euclidean distance and the cost function.
The resulting distance transform is not exact, as the error
discussion in [16] shows, but we found that the errors are
negligible in our application, especially as the costmap is
only an approximation of the actual navigation cost.

Alg. 1 gives a high-level overview of the algorithm. The
basic idea of the JFA is to encode the coordinate of the
nearest obstacle found so far as a color value in each cell
and to propagate the information on the nearest obstacle in
exponentially decreasing “jumps” across the map. We use a
method encode (·) to represent cell coordinates as color values
and its inverse method decode (·). Hence, |decode (p)− p| is
the Euclidean distance between the nearest obstacle encoded
as a color value in cell p and the coordinates of cell p itself.
For details on the JFA, we refer to [16].

C. Single-Source Shortest Path

Planning the shortest path from the robot’s current location
to one or more destinations is a basic component for many
navigation tasks. While there exist efficient algorithms for
solving the single-source shortest path (SSSP) problem,
these algorithms rely on special data structures such as

Algorithm 2: Bellman-Ford algorithm variant with trans-
form feedback buffer (XFB)

1: // Initialization
2: for all map pixels p do in parallel:

3: distp ←

{
0 if pixel is robot’s current location
∞ otherwise

4: changedp ←

{
true if pixel is robot’s location
false otherwise

5: // Wavefront propagation
6: emit robot’s neighbor cell coordinates to XFB
7: while XFB is not empty do:
8: for all cells p in XFB do in parallel:
9: changedp ← false

10: for all neighbor pixels q of p do:
11: if changedq then
12: d← distq + ‖p− q‖+ costp
13: if d < distp then
14: distp ← d
15: changedp ← true

16: if changedp then
17: emit neighbor cells of p to XFB

Fibonacci heaps (e.g., Dijkstra’s algorithm [17]) or bucketing
structures (e.g., Thorup’s algorithm [18]) that are not suitable
for being implemented in a graphics pipeline. The core
problem with these algorithms is that they rely on processing
nodes sequentially in a particular order, whereas GPUs are
most efficient at processing nodes in parallel.

The Bellman-Ford algorithm [19], [20], by contrast, can
be parallelized. In a grid map with the same size as the
occupancy grid map of the environment, we store the shortest-
path distance from the robot’s location. We initialize the
robot’s current grid cell with distance 0 and all other cells
with ∞. For each grid cell, we then check which of the eight
neighbor cells have changed and decrease the cell’s distance
in case a shorter path via a changed neighbor has been found.
In this way, a wavefront of cells with decreasing distance
emerges, and we repeat the process as long as cells change.
The speedup of using the GPU stems from processing all
wavefront cells in parallel.

We present two implementations. In our first implemen-
tation in Alg. 2, we use transform feedback buffers (XFB)
that modern OpenGL ES implementations support. Transform
feedback buffers capture the output of the geometry shader
in a buffer that can be used as input for the vertex shader
in subsequent passes. We enqueue the neighbor cells of a
changed cell by emitting the neighbor cell’s coordinate from
the geometry shader. The next pass processes in parallel only
the queued cells, reducing overhead. However, this technique
requires both XFB and texture access in the geometry shader,
which is not supported on some of the tested devices.

For devices that do not support XFB, we propose the second
implementation in Alg. 3. We use a “changed” flag to mark
changed cells similar to the EBellflaging algorithm in [21]. We



Algorithm 3: Bellman-Ford algorithm for single-source
shortest path computation

1: // Initialization
2: for all map pixels p do in parallel:

3: distp ←

{
0 if pixel is robot’s current location
∞ otherwise

4: changedp ←

{
true if pixel is robot’s location
false otherwise

5: // Wavefront propagation
6: #changed ← 1
7: while #changed > 0 do:
8: #changed ← 0
9: for all map pixels p do in parallel:

10: changedp ← false
11: for all neighbor pixels q of p do:
12: if changedq then
13: d← distq + ‖p− q‖+ costp
14: if d < distp then
15: distp ← d
16: changedp ← true

17: if changedp then
18: atomically increment #changed

encode the “changed” flag as the sign and the current distance
as the absolute value of a single-channel integer texture. As
we are only interested in the length of the shortest path, we
do not store a pointer to the predecessor of each cell. OpenGL
enforces protection against memory access collisions when
processing pixels in parallel by denying fragment shaders to
write to other pixels and by requiring separate buffers for
reading and writing. Hence, we read from and write to two
separate buffers and swap the buffers after each pass. We
implemented the counter for counting changed pixels as an
atomic counter and read back the counter value with a delay
of three frames to prevent CPU-GPU synchronization points
with pipeline flushes as explained in Sec. IV-A. The overhead
of processing two extra shader passes after the wavefront has
stopped is negligible in comparison to the loss of computation
power that would occur with synchronous readbacks requiring
to flush the graphics pipeline.

The disadvantage of the second implementation is that in
each shader pass, the fragment shader has to check for each
neighbor whether it has changed in the previous iteration.
Reading neighbor cells require costly texture fetches.

After computing the shortest distance map with either of the
Bellman-Ford implementations, we combine the distance map
including the inflation costs from Alg. 1 with the articulation
costs, which are constant for all cells, to a combined cost
map according to Eq. (1).

D. Information Gain Computation

The information gain of a viewpoint is based on counting
texels of the region of interest that are observable from the
viewpoint and have not been seen before. When rendering

Algorithm 4: Computing the information gain of a
viewpoint candidate

1: enable depth test
2: render obstacles to depth buffer
3: render region of interest surfaces
4: for all front facing region of interest fragments p do in

parallel:
5: compute texture coordinate t corresponding to p
6: store “observed” flag to region of interest texel t
7: #covered← 0
8: for all region of interest texels t do in parallel:
9: if t has “observed” flag then

10: atomically increment #covered

a region of interest object, the fragment shader accesses the
texel at the texture coordinates given in the fragment data
to determine the fragment’s color. Using the imageStore
command present since OpenGL ES 3.1, the fragment shader
can modify the texture at the same time. We use this
mechanism to mark the texel as observed by writing a flag
to the texture. By rendering the region of interest objects last
with early depth tests and backface culling enabled, we make
sure that the fragment shader only marks texels visible from
the camera as observed. Counting the newly marked texels
then yields the information gain value as Alg. 4 shows.

E. Estimating the Utility Map

Alg. 4 can be used to estimate the information gain for
a single camera viewpoint. For choosing the next best view
optimizing the utility function in Eq. (2), we would need
to compute the information gain for every possible camera
location. Alternatively, the algorithm could render an image
with virtual cameras placed at every possible region of interest
surface location to determine the freespace volume from
where the given region of interest texel can be observed. Both
variants would require rendering a large number of images
from different camera locations, causing high computational
loads. Hence, we propose a novel heuristic for estimating
an information gain map by rendering a spherical panorama
image with a virtual camera placed at the edge of articulated
objects or other obstacles. The core idea is that a spherical
camera image placed in the opening of a drawer, cupboard,
or other container shows the inside of the container on one
side and the freespace volume from where the contents can
be observed on the opposite side of the panorama image.
Fig. 2b shows an example panorama rendered by a virtual
camera placed at the crosshair in Fig. 2a.

Alg. 5 describes the standard method of rendering a
spherical panorama by first rendering all objects to the six
sides of a cubemap and then projecting the cubemap texture to
equirectangular coordinates. We first render all obstacles to a
depth cubemap only, as we do not need the color information
of the obstacles. With depth testing enabled, we then render
the region of interest surfaces with the texture from Alg. 4
that indicates for each texel whether it has been observed



(a) Scene with a cupboard. The region of interest is marked in red.
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(b) Same scene rendered with a spherical panorama camera located at the
crosshair in (a). The green surface indicates the reachable camera poses.

Fig. 2. Example scene illustrating the process of estimating an information
gain map. The scene is rendered as a spherical panorama image from virtual
cameras placed at the edges of articulated objects. If a region of interest
(red) is opposite the surface of reachable camera poses (green), then there
is a direct line of sight. We use the panorama image to determine which
region of interest parts are getting into the field of view when the camera
moves on the reachable surface.

before or not. As described in Sec. III, we assume that the
environment model contains one or more surfaces where
the robot’s camera can be placed. We render these surface
with a special texture that encodes the texture coordinate of
each texel as its color value. This technique allows us to
convert back from spherical coordinates to coordinates of the
reachable surface later for projecting information gain values
onto the costmap. Fig. 2b shows the result for an example
scene. If a region of interest texel t and a camera viewpoint v
on the surface of reachable poses are on opposite sides of
the sphere, that means that t just becomes visible when the
camera moves to v.

To estimate the information gain of moving the camera
to v, we calculate an integral image by accumulating the
number of region of interest pixels while pivoting a ray
around the spherical camera’s center. Fig. 3 illustrates the
concept of computing the integral images for two spherical
panorama cameras c1 and c2. At the panorama image cell A,
the container edge blocks the line of sight through the camera
origin to the region of interest. Pivoting counterclockwise
around the camera center, the region of interest first becomes
visible at B. Moving towards C, we increment the information
gain estimate as long as new region of interest texels come

Algorithm 5: Rendering a spherical panorama with
semantic information

1: enable depth test
2: render to 6-side cubemap:
3: obstacles (depth only)
4: region of interest surfaces with texture from Alg. 4
5: reachable surfaces with index texture
6: for all color cubemap pixels do
7: project pixel to equirectangular coordinates

region of interest
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Fig. 3. Estimating the information gain map by calculating the integral
images of two spherical cameras c1 and c2. The numbers indicate the
estimated information gain accumulated by pivoting rays through the camera
center in the direction indicated by arrows.

into view. Between C and D, the container edge again blocks
the line of sight to new region of interest texels, hence
the information gain stays constant. Adding the information
gain estimates for the two cameras c1 and c2 gives a good
approximation of the true information gain map without
having to render panoramas at all camera positions between
c1 and c2. Computing the integral image is done in the first
part of Alg. 6.

The remainder of the algorithm estimates the utility map.
As we render the surface of reachable camera poses with
a special index texture that encodes the texture coordinates
on the surface in Alg. 5, we can use these coordinates to
compute the corresponding position on the cost map. If a
pixel p = (lat , lon) on the sphere image belongs to the
reachable surface, the algorithm looks up the associated cost
value from the cost map and subtracts it from the estimated
information gain value encoded at the pixel (lat , lon) on the
opposite side of the sphere, writing the output to a utility
map with the same coordinate system as the cost map.

F. Covering Environments with a Robot’s Camera

We use the utility map estimated with Alg. 6 to determine
the next best view pose in a greedy iterative scheme. For
each articulation object, the robot uses Alg. 6 to estimate
how the utility map changes when manipulating the object.
Our algorithm currently actuates objects separately to avoid
collisions with other articulated objects, as for example doors
and drawers of cupboards can block each other. A high-
level planner could be used to resolve this issue and generate



Algorithm 6: Estimating utility map from spherical
panorama image

1: // calculate integral image I
2: for all lon ∈ [−90◦, 90◦] do in parallel:
3: c (lon)← 0

4: for lat ∈ {−180◦, . . . , 180◦} do in sequence:
5: for all lon ∈ [−90◦, 90◦] do in parallel:
6: if pixel at (lat , lon) is region of interest then
7: c (lon)← c (lon) + 1

8: I (lat , lon)← c (lon)

9: // calculate utility map U
10: for all pixel p at lon ∈ [−90◦, 90◦], lat ∈ [−180◦, 180◦]

do in parallel:
11: coord ← color-decode(p)
12: if p is marked as reachable surface then
13: lat ← lat + 180◦

14: lon ← −lon
15: U (lat , lon)← I

(
lat , lon

)
− cost(coord)

16: else
17: U (lat , lon)← −cost(coord)

feasible configurations of multiple objects. The algorithm then
determines the articulation object and the robot position on
the utility map with the highest estimated utility. To determine
the best camera orientation, we sample orientations on a unit
sphere and use Alg. 4 to determine the orientation with the
highest information gain.

V. EXPERIMENTAL EVALUATION

We implemented our approach in OpenGL ES 3.2 and
evaluated it with models of home and office environments
created with CAD software. We first present the results
of benchmarking the individual algorithms and then show
experiments where a robot successfully covers an environment
with our novel utility map heuristic that takes into account
the articulation of objects.

A. Benchmarking GPU Algorithms

We designed our implementation to be compatible with
a wide range of devices ranging from embedded devices to
multi-GPU servers, hence we evaluated the performance on
different device classes. Tab. I lists the technical specifications
of the tested devices. We chose an Android smartphone as
a representative of embedded devices and implemented the
CPU-side code using the Android Native Development Kit
(NDK) in C++. Apart from device-specific initialization, we
used the same code base on all systems.

Tab. II shows the benchmarking results for each device.
Alg. 2 could not be tested on the notebook device due to
missing support for image access in geometry shaders. While
the OpenGL API is standardized, the GPU architectures and
driver implementations differ significantly between manu-
facturers and device generations, hence the benchmarking
results also vary strongly between devices. The algorithms
for costmap computation, information gain estimation, and

TABLE I

DEVICES USED FOR BENCHMARKING

Class Test device

Smartphone

Device: Google Pixel
CPU: Qualcomm Snapdragon 821 (4 cores, 2.4GHz)
GPU: Qualcomm Adreno 530
OpenGL profile: 3.2 ES

Notebook
CPU: Intel i7-4710MQ (4 cores, 8 threads, 3.5GHz)
GPU: Intel Haswell Mobile HD 4600
OpenGL profile: 3.3 core

Desktop
CPU: Intel Core i7-3770 (4 cores, 8 threads, 3.4GHz)
GPU: NVIDIA GeForce GTX 660 Ti
OpenGL profile: 4.4 core

Server
CPU: Intel Xeon E5-1630 (4 cores, 8 threads, 3.7GHz)
GPU: 4×NVIDIA GeForce GTX 1080
OpenGL profile: 4.6 core

TABLE II

BENCHMARK RESULTS: TIME PER FRAME WITH STANDARD DEVIATION.
SEE TAB. I FOR DEVICE SPECIFICATIONS.

Algorithm Smartphone Notebook
Alg. 1: costmap 2.572± 2.492ms 0.142± 0.010ms
Alg. 2: Bellman-Ford XFB 251.4± 26.87ms N/A
Alg. 3: Bellman-Ford 272.9± 21.05ms 52.29± 0.987ms
Alg. 4: information gain 2.116± 7.228ms 0.092± 0.006ms
Alg. 5: panorama rendering 0.667± 0.541ms 0.103± 0.069ms
Alg. 6: utility map 575.2± 32.17ms 245.4± 2.284ms

Algorithm Desktop Server
Alg. 1: costmap 0.097± 0.013ms 0.071± 0.002ms
Alg. 2: Bellman-Ford XFB 11.08± 0.274ms 8.694± 0.040ms
Alg. 3: Bellman-Ford 10.92± 0.103ms 9.432± 2.191ms
Alg. 4: information gain 0.099± 0.016ms 0.084± 0.002ms
Alg. 5: panorama rendering 0.083± 0.009ms 0.060± 0.024ms
Alg. 6: utility map 30.92± 0.745ms 12.34± 0.723ms

panorama rendering run in less than 3ms on all devices,
showing the potential of our approach. The standard deviation
of computation times is very small in many cases, which is
due to the design principle of reducing branching, making
the runtime independent of the input data.

B. Estimating Information Gain

Fig. 4 shows a comparison of the estimated utility map
and the real utility map generated by exhaustive sampling for
the cupboard scene in Fig. 2a. As can be seen, the estimated
utility map is similar to the real utility map. Our heuristic,
however, focuses on covering hard-to-reach corners due to
the placement of the virtual spherical cameras at the edges of
articulated objects. The information gain of center portions
of regions of interest tend to be underestimated, but these
regions are usually covered along the way when inspecting
the rest of the region. Coverage of the center regions can be
improved by adding additional panorama cameras inside the
openings of articulated objects.

C. Covering Environments with a Robot’s Camera

Fig. 5 shows the progress of a robot covering a kitchen
environment. Starting from the initial pose in Fig. 5a, the robot
estimates a utility map for each articulated object in turn. The
floor texture visualizes the combined estimated utility map
for an example configuration with three articulated objects
partly opened. The robot then chooses the articulated object
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Fig. 4. Comparison of the real utility map obtained by exhaustive sampling
and the estimated utility map generated by Alg. 6 for the scene with a
cupboard shown in Fig. 2.
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Fig. 5. Progress of exploring a kitchen scene. The robot first estimates utility
maps for multiple articulation configurations. The robot then chooses the
articulation object and view point with the highest utility (b). Afterwards, the
algorithm computes utility maps from the new location taking into account
already observed regions. Regions of interest are marked in red, observed
regions in green, and the robot’s camera is symbolized as a white pyramid.

with the highest estimated utility, articulates the object, and
investigates the scene from the location and camera orientation
with the highest utility (Fig. 5b). The observed regions of
interest are marked in green. The average time required to
compute the next-best-view position is 4.85 s±0.29 s for this
scene on the desktop computer specified in Tab. I.

While we focused on covering regions of interest occluded
by articulated objects, the algorithms proposed in this paper
are also applicable to covering arbitrary scenes. To apply
our heuristic for estimating utility maps as described in
Sec. IV-E, suitable locations for the spherical cameras have
to be determined beforehand depending on the scene.

VI. CONCLUSION

In this paper, we proposed a novel approach for covering
known scenes containing articulated objects that the robot

has to manipulate for inspecting user-defined regions of
interest. We presented algorithms for costmap estimation,
path planning, and information gain estimation that run on
GPUs. In this way, our system can parallelize the necessary
computations to determine the next best view. We introduced
a heuristic for estimating information gain maps based
on spherical panoramic images and showed in simulation
experiments that our approach enables a robot to successfully
inspect home environments. Our algorithms run on GPUs
for embedded systems and we show benchmark results for
multiple device classes.
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