
Polygonal Perception for Mobile Robots

Marcell Missura Arindam Roychoudhury Maren Bennewitz

Abstract— Geometric primitives are a compact and versatile
representation of the environment and the objects within. From
a motion planning perspective, the geometric structure can be
leveraged in order to implement potentially faster and smoother
motion control algorithms than it has been possible with grid-
based occupancy maps so far. In this paper, we introduce a
novel perception pipeline that efficiently processes the point
cloud obtained from an RGB-D sensor in order to produce a
floor-projected 2D map in the field-of-view of the robot where
obstacles are represented as polygons rather than cells. These
polygons can then be processed by path planning algorithms
and obstacle avoidance controllers. Our pipeline includes a
ground floor plane detector that performs significantly faster
than other contemporary solutions and a grid segmentation
algorithm that uses image processing techniques to identify the
contours of obstacles in order to convert them to polygons. We
demonstrate the performance of our approach in experiments
with a wheeled and a humanoid robot and show that our polyg-
onal perception pipeline works robustly even in the presence of
the disturbances caused by the shaking of a walking robot.

I. INTRODUCTION

Robots perceive the world through sensors such as cam-
eras, laser rangers, and RGB-D sensors that allow them
to determine the location and shape of objects in their
environment. Within the scope of mobile navigation, the
perceived data is processed primarily to create a map that
contains impassable regions the robot must not enter. Then,
the map can be used to plan the motion of the robot from its
current position to a given goal, without traversing any of the
blocked regions. Current research has converged to represent
such maps as occupancy grids where each cell of the two or
three-dimensional grid represents a small spatial unit. The
cells usually hold a floating point value that indicates the
probability of the cell being occupied. Based solely on the
grid representation, simultaneous localization and mapping
(SLAM), path planning, and obstacle avoidance algorithms
have matured to a state where robots are able to move about
in realistic office environments [1].

The conversion of spatial information that arrives in form
of a point cloud to a grid structure is a reasonable first step as
it considerably reduces the amount of data and augments it
with neighbourhood information. For example, it is relatively
easy to identify clusters of points once they have been
sorted into a grid. However, we argue that postprocessing the
grid structure to polygons—a geometric representation that
holds more semantic information in less amount of data—is
beneficial for mobile robot navigation. In path planning, the
polygonal structure can be exploited to compute a smoother
path in a shorter amount of time than by using an A* search

All authors are with Humanoid Robots Lab, University of Bonn, Germany

Fig. 1: Polygonal perception of a scene using the RGB-D camera
mounted on a Nao’s head. The point cloud observation is converted
to a 2D polygonal representation (red) that marks the boundaries
of blocked regions.

in a grid [2]. Collision avoidance approaches can also benefit
from a geometric representation [3] [4], also in 3D [5] [6].

In a nutshell, in order to convert depth data to polygons,
the first step of our pipeline is to remove the points that
belong to the floor plane. This is crucial since otherwise the
floor would be seen as an obstacle. The remaining points
are sorted into an occupancy map, which is a 2D grid
structure that stores a binary value in each cell that indicates
whether the cell contains at least one point, or not. The
occupancy map is then segmented using a contour detection
algorithm that enumerates the border cells of each segment
in counter clockwise order. These chains of border cells are
already polygons, but we process them further and reduce
their complexity. Figure 1 illustrates an example where the
point cloud data obtained from the RGB-D camera mounted
on a Nao robot’s head has been converted to a polygonal
representation. As we show in the experimental evaluation,
the additional computation time to elevate the grid model
to polygons is only a small fraction of the time needed to
sort the data points into the grid to begin with. To the best
of our knowledge, we are the first to present a polygonal
processing pipeline working online on a walking robot with
realtime computational capabilities.

II. RELATED WORK

Demyen et al. [7] introduced a path finder that is based
on triangulation of a polygonal map. Missura et al. [2]
developed a shortest path search algorithm where only a
necessary portion of the Visibility Graph [8] in a polygonal
scene is built during the search. Kuindersma et al. [9],
Griffin et al. [6], and Hildebrand et al. [10] implemented

footstep planning for humanoid robots where surafces are
represented as polygons. [6] Missura et al. [4] augment
polygons with a velocity vector and compute predictive
collision avoidance with the Dynamic Window Approach.
All of these works require a polygonal representation.

Baizid et al. [11] argue that occupancy maps have a
prohibitively large requirement of resources when it comes
to the use case of multi-agent exploration where maps have
to be exchanged between robots over a network and merged
on each individual robot. Bandwidth, memory, and the CPU
are soon depleted when adding more robots to a team. They
proposed a vector-based map representation where initially
every point in the cloud is a vector in the map. Then, ε-
close neighbours are connected with an edge, and edges are
merged if they are almost colinear. The authors achieved a
significant compression with respect to using an occupancy
grid that was created on the same map.

Dichtl et al. [12] upgraded vector maps to polygonal maps
where a closed polygon bounds the perimeter of the explored
space. Two types of edges are distinguished—one type for
edges that delimit the boundary of obstacles, and another
type for edges that represent the boundary of the unexplored
space. Inside the bounding polygon, smaller polygons delimit
the blocked regions. The polygons are gained from an occu-
pancy grid by outlining the borders of cells that represent the
boundary of free space with vertical or horizontal vectors,
and joining these vectors to polygons. Later on, the same
authors realized a polygon-based SLAM system [13] where
polygons are gained from a laser scan that is localized on a
map using a point-to-vector ICP procedure. Here, the edges
of polygons are now determined by connecting neighbouring
laser points and merging nearly parallel lines. Our work
includes grid processing as an intermediate step that makes
our results applicable for RGB-D and Lidar (3D) sensors in
addition to laser (2D). The grid processing also helps with
the expansion of polygons by the radius of the robot.

Schnabel et al. [14] and Ochmann et al. [15] use
the RANSAC algorithm to segment a large point cloud
into geometrical templates including planes for reconstruc-
tion of buildings. Unfortunately, RANSAC is prone to re-
port points that belong to unrelated, but coplanar surfaces.
Wahrmann et al. [5], [16] also use RANSAC to identify
planes, but split them into clusters later with the help of a
2D grid. The clusters are then converted to convex polygons
with a fixed number of corners to represent walking surfaces.
In our work, we use a normal-based region-growing method
to first cluster points that lie on the same surface and then
we fit planes into the clusters using only points that belong
to the same cluster. Our polygons are non-convex and can
approximate non-convex shapes such as the corners of a
room. In addition to surfaces, Wahrmann et al. [5] process
non-planar obstacles to swept-sphere volumes, which appear
to be a great representation in 3D. We model obstacles as
ground-projected polygons to explore the possibilities of a
simpler 2D model.

Deits et al. [17] compute large polytopic and ellipsoid
regions in a map as a representation of free space with a focus

of performing a mixed-integer convex optimization for foot-
step planning [18]. The algorithm used is a mixture of two
convex optimization programs that monotonically increase
the size of a collision-free polytope around an initialization
point and the inscribed ellipse within the polytope. It has
been designed for offline processing with a runtime in the
range of a few seconds, as stated by the authors.

As the identification of the floor plane is an essential
part of our method, our work is closely related to planar
segmentation of point clouds. Holz et al. developed the
first real-time-capable algorithm that can segment a point
cloud gained from an RGB-D sensor [19] [20] [21]. The
method is based on the computation of surface normals from
neighbouring pixels in the depth image and the identification
of regions with similar normals. We adopted and improved
upon this technique as explained in the following sections.

Karkowski et al. [22] segmented a height map into planar
regions using region growing of surface normals for the pur-
pose of footstep planning. The normals were computed from
neighbouring cells in the height map instead of directly from
the depth data. Here, planar regions and their boundaries are
still encoded using groups of cells rather than polygons.

III. FLOOR PLANE DETECTION

The identification of planar surfaces is a load-bearing
concept when it comes to the segmentation of point clouds.
The reason for this is that man-made environments are full
of planes such as the floor, the walls, and tabletops. When
the points reflected by such surfaces are removed from
an RGB-D scan, the remaining points are much easier to
identify as objects of interest. In our navigational scope, our
only concern is the detection of the floor plane. When the
floor is successfully removed, all remaining points represent
obstacles the robot must not collide with. The challenge
thereby is to remain computationally efficient, i. e., to be able
to process the sensor data in real time. We are using an ASUS
Xtion Pro Live RGB-D sensor that delivers a 640x480 depth
image at a frame rate of 30 Hz to present the results of this
work. Real time capability means processing these roughly
300K points in less than 33 milliseconds. Other cameras (e.g.
Intel RealSense) and higher resolutions are possible.

In order to find the floor in a depth image, we compute
surface normals using a mesh defined in image coordinates
and add an optional pruning and vertical sorting step that
helps with the recognition of the floor. We use region grow-
ing to cluster points with similar normals into contiguous
surfaces and use a quick-to-compute similarity function to
compare points efficiently. We apply an improved algorithm
that exploits the sorted order of the points to identify the floor
plane. A flow chart of the steps described in the following
is presented in Figure 2.

A. Computation of Surface Normals

We assume an untransformed set of points Pc in the right
hand coordinate frame of the camera where the x-axis points
in the forward direction and the z-axis points up. We define

Floor detection
surface
normals

pruning, sorting
segmentation

(region growing)
floor selection

ground plane
fitting

Polygonization
point removal

(e.g. floor plane)
occupancy grid dilation

contour
detection

Douglas
Peucker

transform
all points

floor normal

polygons

ucup vector

Fig. 2: The flow charts of our floor detection and polygonization pipelines.

a low-resolution grid

Gc = {si,j = (p,n)i,j |pi,j ∈ Pc, 0 ≤ i, j < 32} (1)

of 32x32 samples si,j uniformly distributed in the pixel
coordinate space of the RGB image, as shown in Figure 3(a),
where pi,j = (x, y, z)i,j ∈ Pc is the 3D point corresponding
to the grid coordinates (i, j) and ni,j is the surface normal
in this point. We compute the surface normals only for this
small set of samples.

We determined the number of samples (32x32) experimen-
tally. Using fewer samples results in the system starting to
miss small floor patches. Using more samples, however, does
not significantly improve the quality of the floor detection
as most of the time there are more than sufficient floor
samples in front of the robot. The runtime of the floor
detection algorithm is linear in the number of samples and
takes up only a small fraction of the total time needed to
compute the entire pipeline. If more samples are needed for
a certain use case, quadrupling or octuplicating the number
of samples would result only in a small increase of the total
runtime. Furthermore, a higher resolution of the sensor does
not necessitate an increase of the number of samples. It is
the opening angle of the camera that determines how many
samples are needed for reliable floor detection.

In [20] and [21], neighbouring pixels are used for the
computation of the surface normal of a point. This method
is susceptible to the noise of the depth sensor and requires
a considerable amount of smoothing. We simply compute
the normals based on the neighbouring points in our low-
resolution grid instead of the neighbouring pixels and do
away entirely without smoothing as the increased distance
between the points absorbs most of the sensor noise. Con-
sequently, the normalized surface normal of a point pi,j is
given by

ni,j = −
(
pi+1,j − pi−1,j

)
×
(
pi,j+1 − pi,j−1

)
|
(
pi+1,j − pi−1,j

)
×
(
pi,j+1 − pi,j−1

)
|
. (2)

B. Pruning and Sorting

We discard the samples whose normals are not approxi-
mately upright and are left with points that belong mostly
to horizontal planes. This step is shown in Figure 3(b). We
compute the pruned set

G̃c = {si,j = (p,n)i,j |ni,j · uc > cos
(π
4

)
} ⊆ Gc (3)

with the help of a scalar product with an up vector uc that
expresses the direction of the world z-axis in the camera

frame. A rough knowledge of the vertical direction uc is
the only assumption we make in order to find the ground
plane. Since ground vehicles and humanoid robots always
have a cardinal upright direction, even using a constant
uc = (0, 0, 1)

T would result in a fair performance where
the floor is recognized as long as the tilt angle of the sensor
remains less than π

4 radians with respect to the world vertical.
When a real robot is involved, typically a good estimate of
the camera transformation M can be obtained using motor
encoders and an IMU, and the up vector can be set to
uc =M−1 (0, 0, 1)

T to achieve better results. Our preferred
method is to initialize the up vector with uc = (0, 0, 1)

T

and to allow a brief initialization phase where the depth
camera is purposefully held in a roughly upright position.
Once the floor plane has been successfully identified, i. e.,
at least one scan with a sufficient number of floor points
has been seen, the determined floor normal nF can be fed
back as the up vector for the next frame uct+1 = nFt . This
way, the floor detection algorithm becomes independent of
the robot and can be run with a moving camera alone while
the up vector is always maximally precise. We found this
method superior to proprioception and this is the method we
used in our experiments.

After pruning, we sort the remaining samples G̃c in
vertically increasing order by the projection of their points
onto the up vector, i. e.,

(sm > sn)⇔ (pm · uc > pn · uc) . (4)

This is equivalent to sorting the points by their z-coordinates
in the world frame. Since we assume the floor plane to be
the lowest plane in a scan, the sorting is helpful in a way that
it moves the floor points we are looking for to the beginning
of the G̃c set. Note that in order to extract all planes from a
scan, the pruning and the sorting has to be omitted, and the
up vector is not needed.

C. Segmentation

Using the pruned and sorted set G̃c, we set the ”in”
flag σi,j = 1 for all samples in G̃c, and initiate a recursive
four-neighbour flood fill as shown in Algorithm 1 at the grid
coordinates of all samples in the order they appear in G̃c. One
run of the flood fill algorithm collects all samples reachable
from the start coordinates (i, j), neighbour by neighbour, as
long as they are close to their direct neighbour according to
the plane distance function

d(sm, sn) = |nm · (pn − pm) |+ |nn · (pn − pm) | (5)

(a) All Samples (b) Pruned Samples (c) Floor Samples

Fig. 3: Computation steps of our floor plane detection algorithm. The upper row shows color images, the bottom row shows depth images.
a) The surface normals are computed for a low-resolution (32x32) grid of samples that have been selected in image coordinates. b) The
samples are pruned such that only samples with roughly upright normals are kept in the set. c) The remaining samples are sorted vertically
and clustered with a region-growing algorithm that joins direct neighbours when they seem to belong to the same plane according to our
unique plane distance function (5). Then, the lowest cluster is selected as the floor set and used to fit a plane into its points. The normal
of the detected floor plane and the convex hull of the floor points are indicated in blue. Note that the jacket and the skateboard appearing
in the image are not seen as floor.

and adds them to a set of samples S that represents a segment
of a planar surface. Neighbouring samples are considered
to belong to the same plane when their distance d(sm, sn)
is smaller than a ”low” threshold τl = 0.01 as used in
Algorithm 1 in lines 5, 7, 9, and 11. The distance function
efficiently compares samples by their distance to the planes
they represent and implicitly also by the angles of their
normals with respect to each other. The distance is zero when
two points have the same normal and lie in the same plane
with respect to their normals, and monotonically increases
with both kinds of errors—a mismatch of the normals or a
distance between the planes. This allows us to cluster points
that belong to the same surface in one sweep. Since the flood
fills are started in a vertically sorted order, lower planes are
prioritized to collect their samples first. The result of this
procedure is shown in Figure 3(c).

D. Floor Selection

The remaining task is to identify which of the found
segments S belong to the floor, and to merge them in order
to gather as many floor points as possible for a final fit.
The floor plane selection procedure is described formally in
Algorithm 2. We exploit the vertically sorted order and give
segments that are found first priority over segments that are
found later. Lower planes are in general better floor estimates
than the largest planes as large planes can for example be
table tops that dominate the scan. Let F denote the set of

Algorithm 1 FLOODFILL

Input: Grid coordinates i, j
Output: Segment of samples S

1: if (σi,j = −1) then
2: return
3: σi,j ← -1
4: S ← S ∪ si,j

5: if (d(si+1,j , si,j) < τl) then . Eq. 5
6: FLOODFILL(i+ 1, j)
7: if (d(si−1,j , si,j) < τl) then . Eq. 5
8: FLOODFILL(i− 1, j)
9: if (d(si,j+1, si,j) < τl) then . Eq. 5

10: FLOODFILL(i, j + 1)
11: if (d(si,j−1, si,j) < τl) then . Eq. 5
12: FLOODFILL(i, j − 1)
13: return S

points that make up our floor hypothesis. We initialize F with
the empty set and always accept the very first segment as our
initial floor hypothesis, i. e., F = S in line 9 of Algorithm 2.
However, we attempt to merge the following segments with
the floor plane hypothesis we have so far by computing the
average representants s̃F and s̃—the averages of the points
and the normals in the floor set F and segment S—, and
comparing them with each other with our plane distance
function in line 10. If the distance between the averages is
lower than a ”high” threshold, i. e., d(s̃F , s̃) < τh = 0.1, we

Algorithm 2 FLOORDETECTION

Input: Point cloud Pc
Output: Floor representant sF = (pF ,nF)

1: Compute all normals ni,j for sample set Gc . Eq. 2
2: Compute pruned set G̃c . Eq. 3
3: Sort the points in G̃c . Eq. 4
4: F ← ∅
5: for (si,j ∈ G̃c) do
6: S ← FLOODFILL(i, j)
7: s̃ = average(S)
8: if (F = ∅) then
9: F ← S, s̃F ← s̃

10: else if (d(s̃F , s̃) < τh) then . Eq. 5
11: F ← F ∪ S
12: s̃F = average(s̃F , s̃)
13: else if (|F | ∗ 20 < |S|) then
14: F ← S
15: s̃F ← s̃
16: sF ← planeF it(F)
17: return sF

add the samples of segment S to the floor set F in line
11. If not, we ignore segment S and continue with the next
one until all segments have been considered. Since our first
hypothesis may well be an outlier, but then it is typically
very small, we allow a segment found at a later time to
replace the floor hypothesis in line 14, if its size in terms
of number of contained samples is at least twenty times
larger. This way, we make sure that outliers do not block
the floor finding process by coming first, but we also do not
simply settle for the largest plane, which could be a table
top dominating a scan. When a lower segment contains at
least 5% of all samples, it can no longer be replaced by a
larger plane segment that appears later in the vertical order.
An example of a critical case where the largest plane is a
table top and only a small patch of floor is to be seen–and
is correctly found–is shown in Figure 4(b).

Finally, we use the points in the floor set F for an ordinary
least squares fit in line 16, and populate the floor representant

(a) Close to a wall (b) Over a table top

Fig. 4: Challenging situations. a) The RGB-D sensor is pointed at a
wall and there are barely any floor points. The floor is still correctly
detected. b) The camera is looking over a tabletop that dominates
the scan. The floor is seen correctly only from a few points on the
far side of the table.

sF = (pF ,nF) with the normal nF of the fitted plane, and
an arbitrary point pF selected from the plane. Note that the
surface normals are only used to select similar points, but
not for the computation of the final fit of the floor plane.

Furthermore, we abstained from using the z-intercept to
compare surfaces as the extrapolation of a surface segment
over a large distance amplifies the noise. In [20], where the
z-intercept is used to cluster surface segments to planes,
a logarithmic scale was used to try and counteract this
problem. Our result is robust and precise as can be seen
in the accompanying video. Moreover, we did not need to
assume an estimate of the position of the RGB-D sensor.
Our only requirement is for the sensor to be roughly upright
before the floor is found in the first scan.

IV. POLYGONIZATION

In the next step towards extracting polygons, we compute
an occupancy map from the RGB-D scan. Using the output
of the floor detection sF = (pF ,nF), we compute a
homogeneous transformation matrix M that rectifies the
point cloud such that the detected floor is aligned with the
xy-plane. The axis-angle parameters of the rotation are given
by a = nF × (0, 0, 1)

T
/|a| and α = arccos(nF · (0, 0, 1)T)

where a and α are the axis and the angle of rotation, and
z = nF ·−pF is the vertical translation that sets the camera
to the correct height relative to the plane. At this point, the
position and the yaw angle (x, y, θ) of the robot with respect
to a global map could also be integrated into M , if available
from localization. Using M , we transform the point cloud
from the camera frame into the world frame Pw = MPc.
Then, in a point removal step, we discard all points from
Pw that have a height of less than 3 cm, most importantly
including the points on the floor plane. We also discard
points higher than a ”ceiling” threshold, e. g., 60 cm for a
Nao robot, to erase obstacles the robot could drive or walk
under. The remaining points are projected to the ground and
sorted into a 2D grid of 100x100 cells that extend 2.5 m to
the left and to the right and 5 m to the front of the robot.
Each cell that contains at least one point is marked with
a value of 1. The remaining cells are marked with 0. We
interpret this grid as a binary image, dilate it by the radius
of the robot, and use Suzuki’ algorithm [23] to detect the
contours of contiguous groups of cells, which are reported
in counter-clockwise order. The coordinates of these cells
are already valid polygons. We reduce the complexity of the
reported polygons using the Douglas Peucker algorithm [24]
that joins line segments which lie almost on the same line.
These computation steps are illustrated in Figures 2 and 5.

The dilation of the occupancy grid prior the contour
detection is an easy way of inflating the obstacles by the
radius of the robot so that the robot can be regarded as
a point, which is helpful for motion planning [8]. The
dilation of the grid automatically handles cases that become
challenging when the inflation is done after the polygons
have been computed, for example when non-convex polygons
become self-intersecting or overlap each other after they have
been expanded. The output of the contour detection after the

(a) Rectified Point Cloud (b) Floor Removal (c) Dilated Occupancy Grid (d) Smoothed Polygons

Fig. 5: Construction of a two-dimensional polygonal environment model. a) Raw point cloud of the RGB-D sensor. b) The floor points have
been removed after floor detection. c) Projection into an occupancy grid, which has been dilated by the radius of the robot. d) Polygons
after contour detection and smoothing.

dilation is guaranteed to produce non-convex polygons that
do not self-intersect and do not overlap each other.

V. EXPERIMENTAL RESULTS

A. Real Robot Experiments

We evaluated our method in experiments with two differ-
ent mobile robots in realistic environments. The experiments
can be seen in the accompanying video1. We used a wheeled
robot ”Robotino” by FESTO and recorded a few minutes
of driving through an office environment. A cluttered office
room, an empty corridor with straight planar surfaces, and
a human walking through the sensor range can be seen,
all correctly resolved to floor-projected polygons. We also
mounted an RGB-D sensor on the head of a Nao robot and
recorded a walk sequence in a miniature lab environment.
The polygonal sensing pipeline was not modified in any way
to adapt it to the humanoid. As can be seen in the video, the
excessive shaking of the walking robot does not disturb our
system. Despite of the shaking camera, the point cloud is
always correctly aligned with the floor and the polygons are
extracted the same way as on the Robotino robot. Figure 5
shows images of a cluttered office as seen by the Nao robot
during these experiments. Even small details such as the legs
of the table appear correctly as polygons.

1Video: https://youtu.be/ij3ZonX8iM8

floor detection
0.48 ms, 3.4%

transformation
6.87 ms, 49.1%

occupancy map
6.57 ms, 46.9%

polygon extraction
0.07 ms, 0.5%

Total: 14 ms

Fig. 6: Runtime analysis of our perception pipeline. The vast
majority of the computation time is spent on the transformation
of the depth pixels into the world frame and the sorting into the
occupancy grid. The floor detection and in particular the polygon
extraction take only a small fraction of the computation time.

In Figure 4, we are showing two particularly challenging
situations. In situation a), the RGB-D camera is facing a wall
so that only few floor points can be seen. The floor plane is
fitted correctly. In situation b), the camera is looking over a
tabletop that makes up the majority of the point cloud. The
floor is detected correctly in a small patch on the far side
of the table. Assumptions such as the floor being the largest
plane, or the floor appearing in the bottom half of the image,
would render the floor detection impossible in this situation.

B. Runtime Analysis

Regarding the computation time that is needed to process
our perception pipeline we can say that with an average
runtime of 14 ms as measured on an Intel Core i5 2.5 GHz
CPU, we are well below the 33 milliseconds mark that is
needed for real-time capability. We determined the runtime
by averaging 1000 time measurements of single frames
with the sensor in the loop. Figure 6 shows an analysis
of the computation times of the processing steps. The vast
majority of the computation time is spent on transforming the
approximately 300K points from the camera frame into the
world frame, and on sorting the transformed points into the
occupancy grid. The processing times of the floor detection
and the polygon extraction are only a small fraction of the
total time.

C. Motion Planning

As an example of application, we used two motion plan-
ning algorithms that use polygons as inputs. The shortest
path shown in Figure 7 has been computed with the Minimal
Construct algorithm [2]. The motion trajectories shown in
Figure 7 have been computed by a recent version of the
Dynamic Window Approach [4] that has been adapted to a
polygonal input.

VI. CONCLUSIONS

We introduced a perception pipeline that creates a polyg-
onal obstacle map in the field of view of the robot from the
point cloud perceived by an RGB-D sensor. Our approach is
computationally efficient and robust to the disturbances of a
driving or a walking robot as we demonstrated in real-world
experiments with two different types of robots. The method
includes a floor plane detector that reliably identifies floor

Fig. 7: Motion planning in a polygonal scene computed from a
3D point cloud. The points show a situation in a corridor where
a human gets in the way of the robot. The shortest path shown
in green to the target cross has been computed with the Minimal
Construct algorithm [2]. The motion trajectories shown in blue have
been computed by a polygonal version of the Dynamic Window
Approach [4]. The cells of the occupancy grid are shown in yellow
and orange color. The computed polygons are outlined in red.

points even in challenging situations so that the floor can be
removed from the scan prior to the segmentation to polygons.
We used the produced polygons in combination with a
shortest path planner and the Dynamic Window Approach
without any issues. The source code of our implementation
is available 2. In future work, we intend to expand our system
to build polygonal maps and to determine the velocity of the
polygons by object tracking.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B.P. Gerkey, and K. Konolige.
The office marathon: Robust navigation in an indoor office environ-
ment. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[2] Marcell Missura, Daniel D. Lee, and Maren Bennewitz. Minimal
construct: Efficient shortest path finding for mobile robots in polygonal
maps. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), 2018.

[3] Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh
Manocha. Smooth and collision-free navigation for multiple robots
under differential-drive constraints. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (IROS), pages 4584–4589. IEEE,
2010.

[4] Marcell Missura and Maren Bennewitz. Predictive collision avoidance
for the dynamic window approach. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2019.

[5] D. Wahrmann, A.-C. Hildebrandt, T. Bates, R. Wittmann, F. Sygulla,
P. Seiwald, and D. Rixen. Vision-based 3d modeling of unknown
dynamic environments for real-time humanoid navigation. Int. Journal
of Humanoid Robotics, 2019.

[6] Robert J. Griffin, Georg Wiedebach, Stephen McCrory, Sylvain
Bertrand, Inho Lee, and Jerry Pratt. Footstep planning for autonomous
walking over rough terrain, 2019.

[7] Douglas Demyen and Michael Buro. Efficient triangulation-based
pathfinding. In Proc. of the National Conference on Artificial In-
telligence (AAAI), pages 942–947. AAAI Press, 2006.

2https://github.com/MarcellMissura/polygonalperception

[8] T. Lozano-Pérez and M.A. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of
the ACM, 22(10):560–570, 1979.

[9] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela,
Hongkai Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ
Tedrake. Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot. Autonomous Robots,
40(3):429–455, Mar 2016.

[10] A. C. Hildebrandt, D. Wahrmann, R. Wittmann, D. Rixen, and
T. Buschmann. Real-time pattern generation among obstacles for biped
robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), 2015.

[11] Khelifa Baizid, Guillaume Lozenguez, Luc Fabresse, and Noury
Bouraqadi. Vector maps: A lightweight and accurate map format for
multi-robot systems. In Intelligent Robotics and Applications - 9th
International Conference, ICIRA 2016, Tokyo, Japan, August 22-24,
2016, Proceedings, Part I, pages 418–429, 2016.

[12] Johann Dichtl, Luc Fabresse, Guillaume Lozenguez, and Noury
Bouraqadi. Polymap: A 2d polygon-based map format for multi-
robot autonomous indoor localization and mapping. In Zhiyong Chen,
Alexandre Mendes, Yamin Yan, and Shifeng Chen, editors, Intelligent
Robotics and Applications, pages 120–131, Cham, 2018. Springer
International Publishing.

[13] Johann Dichtl, Xuan Sang Le, Guillaume Lozenguez, Luc Fabresse,
and Noury Bouraqadi. Polyslam: A 2d polygon-based SLAM algo-
rithm. In Luı́s Almeida, Luı́s Paulo Reis, and António Paulo Moreira,
editors, 2019 IEEE International Conference on Autonomous Robot
Systems and Competitions, ICARSC 2019, Porto, Portugal, April 24-
26, 2019, pages 1–6. IEEE, 2019.

[14] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Completion
and reconstruction with primitive shapes. Computer Graphics Forum
(Proc. of Eurographics), 28(2):503–512, March 2009.

[15] Sebastian Ochmann, Richard Vock, Raoul Wessel, and Reinhard Klein.
Automatic reconstruction of parametric building models from indoor
point clouds. Computers & Graphics, 54:94–103, February 2016.
Special Issue on CAD/Graphics 2015.

[16] Arne-Christoph Hildebrandt, Robert Wittmann, Felix Sygulla, Daniel
Wahrmann, Daniel Rixen, and Thomas Buschmann. Versatile and
robust bipedal walking in unknown environments: real-time collision
avoidance and disturbance rejection. Autonomous Robots, Feb 2019.

[17] R. Deits and R. Tedrake. Footstep planning on uneven terrain with
mixed-integer convex optimization. In Proc. of the IEEE/RAS Int.
Conf. on Humanoid Robots (Humanoids), 2014.

[18] Robin Deits and Russ Tedrake. Computing large convex regions
of obstacle-free space through semi-definite programming. In in
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2014.

[19] Dirk Holz, Ruwen Schnabel, David Droeschel, Jörg Stückler, and Sven
Behnke. Towards semantic scene analysis with time-of-flight cameras.
In RoboCup 2010: Robot Soccer World Cup XIV, pages 121–132,
2011.

[20] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke.
Real-time plane segmentation using RGB-D cameras. In RoboCup
2011: Robot Soccer World Cup XV, pages 306–317. Springer Berlin
Heidelberg, 2012.

[21] Dirk Holz and Sven Behnke. Fast range image segmentation and
smoothing using approximate surface reconstruction and region grow-
ing. In Int. Conf. on Intelligent Autonomous Systems (IAS), 2012.

[22] P. Karkowski and M. Bennewitz. Real-time footstep planning using a
geometric approach. In ICRA, 2016.

[23] Satoshi Suzuki and Keiichi Abe. Topological structural analysis
of digitized binary images by border following. Computer Vision,
Graphics, and Image Processing, 30:32–46, 1985.

[24] David H. Douglas and Thomas K. Peucker. Algorithms for the
reduction of the number of points required to represent a digitized
line or its caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization, 10:112–122, 10 1973.

