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Abstract

Anticipation of human movements is of great importance for service robots, as it is nec-

essary to avoid interferences and predict areas where human-robot collaboration may

be needed. In indoor scenarios, human movements often depend on objects with which

they interacted before. For example, if a human interacts with a cup the probability

that a table or coffee machine might be the next navigation goal is high. Typically,

objects are grouped together in regions depending on the related activities so that en-

vironments consist of a set of activity regions. For example, a workspace region may

contain a PC, a chair, and a table with many smaller objects on top of it. In this article,

we present an approach to predict the navigation goal of a moving human in indoor

environments. We hereby combine prior knowledge about typical human transitions

between activity regions with robot observations about the human’s current pose and

the last object interaction to predict the navigation goal using Bayesian inference. In

the experimental evaluation in several simulated environments we demonstrate that our

approach leads to a significantly more accurate prediction of the navigation goal in

comparison to previous work. Furthermore, we show in a real-world experiment how

such human motion anticipation can be used to realize foresighted navigation with an

assistance robot, i.e. how predicted human movements can be used to increase the time

efficiency of the robot’s navigation policy by early anticipating the user’s navigation
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goal and moving towards it.

Keywords: Anticipating Human Behavior, Robot Path Planning, Human-Centered

Systems

1. Introduction

As it becomes more common for robots to operate in close proximity to humans, it

is often necessary to anticipate their behavior, e.g., to avoid interferences with their

daily habits [1] or predict where assistance may be needed. Previous approaches

have tackled this problem by learning typical human trajectories in known environ-5

ments [2, 3] or reacting dynamically to humans in close proximity [4]. However, in

many cases a lot can be learned about human movements by looking at the last objects

they have interacted with. For example, if we know that a human has interacted with

objects inside a kitchen it is likely that they will next move towards a dining area. In

indoor environments, objects are typically grouped together in activity regions, i.e., re-10

gions containing objects related to certain activities. We therefore propose a Bayesian

inference approach that predicts the navigation goal of a moving human by combining

prior knowledge about such activity regions with online observations of the human’s

pose. The contributions of our work are the following:

• An approach to identify activity regions in indoor environments.15

• A Bayesian inference framework based on transition probabilities between ac-

tivity regions to predict the navigation goal of a moving human.

• An experimental evaluation of the prediction accuracy of our framework includ-

ing a comparison to existing approaches.

To identify activity regions, we first conducted an online survey to identify how20

humans perceive activity regions. We were primarily interested in the question which

objects would be grouped together and at what distances humans would stop perceiving

close objects as associated groups. Based on these results, we designed a rule-based

classifier that identifies activity regions on a semantic map of the environment based
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on the proximity of objects to each other. In general, objects are grouped into the25

same activity regions if they are closer than two meters to each other. Following our

previous work [5], we learn transition probabilities between different activity regions

given the objects present in these regions. We combine this prior knowledge with

online observations of the human’s pose in a Bayesian inference framework to predict

which activity region is likely to be the next navigation goal.30

Our approach makes use of an RGB-D camera system from which we estimate the

user’s pose and human-object interactions [5]. We further use a semantic map of the

environment, that includes object positions and activity regions as well as knowledge

about typical human-object interaction sequences as prior knowledge. Using these

information our approach automatically infers the next activity region in which the35

human will interact with an object.

As we show in the evaluation, our approach achieves a higher prediction accuracy

than a trajectory based reinforcement learning method [6] while simplifying both the

representation as well as the needed training data. We also demonstrate in a real-world

experiment how our framework can be used for foresighted robot navigation.40

Fig. 1 shows a motivating example of our approach in which a human interacts

with a cup. As can be seen by the different colors our system identifies four different

activity regions and determines the most likely one as the region consisting of the table

and the water bottle.

This article is an extended version of our previous publication [7]. In particular,45

we improved the prediction framework by utilizing Bayesian inference, generalized

the interaction detection by moving from individual objects to activity regions, and

contributed additional experiments. In our experimental evaluation, we show that the

extensions provide a significant improvement of the prediction accuracy compared to

our previous work.50

2. Related Work

As noted by Kruse et al. [1] the ability to predict human movements is vital for

any robot that operates in the same environment. Therefore a lot of research has been
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Figure 1: The aim of our framework is to infer the navigation goal of a moving human. This figure was

segmented by hand and shows a sketch about the underlying idea of our framework. The user arrived from

an office area where he interacted with a cup which he now carries. This was detected with an RGB-D camera

using the approach from [5]. Four possible activity regions (1,2,3,4) are likely navigation goals, based on

observations of the movement of the user and prior knowledge about the possible next object interaction.

The green activity region (4), consisting of the table, bottle and cup, is the most likely one, while the violet

regions are also possible with lower probabilities.

put into frameworks that are used for the prediction of human navigation goals [2, 3]

or navigation through dense crowds [8, 9].55

An overview and taxonomy about recent prediction frameworks is given by Rudenko

et al. [10]. The authors categorized approaches in regards to their modeling of the

future human movement in three categories: Physics-based methods (sense-predict),

which predict movements by simulating the next steps of the human using dynami-

cal models based on Newton’s law of motion and observations about the current state60

of the user. Pattern-based methods (sense-learn-predict), which are based on motion

patterns from prior observed user trajectories. Planning-based methods (sense-reason-

predict), which reason about the long-term navigation goals of the user and predict path

hypotheses based on this. Using this taxonomy our presented approach falls into the
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planning-based category, as we infer likely long-term navigation goals of the human65

based on their previous behavior.

In previous work, we implemented a pattern-based prediction approach for mov-

ing humans in indoor environments. We hereby used typical trajectories to learn a

foresighted navigation policy for a service robot via Q-learning [2] and to find a user

quickly if they cannot be located in the proximity of the robot [6]. In contrast to our70

current work, objects have not been explicitly used during the learning or in the pre-

diction, however, they are inherently related to human navigation goals. While this

approach has been applied successfully to the above mentioned scenarios, its training

is intensive and needs new training data for each map. In contrast to that, our new

framework utilizes the same training data for multiple environments.75

Vasquez et al. [11] proposed to create a joint probability distribution to predict the

movement of a human based on observed position changes, a pre-trained, cost-based

prediction model, and a gradient-based goal prediction function. In contrast to our

approach, this system works only for short-term motion prediction. Ziebart et al. [3]

presented a prediction method that uses the maximum entropy and argued that humans80

plan their movement according to cost functions that assign costs to environmental

features, such as surfaces or available spaces. Ziebart et al. aim to learn these functions

based on observations and then use the learned model to predict future movements.

In this method, objects are only implicitly considered, i.e., as environmental features.

Note that by predicting the destination of a human as in our work, we can also infer the85

path the human will probably take using the assumption that humans operate based on

a cost function as in those approaches.

Other existing motion prediction methods include velocity-based modeling of fu-

ture human movements [12, 13] or learning of social models to predict the behavior

of humans in lively places [4, 14]. However, those approaches have been developed90

for short-term prediction of human motions and trajectory adaptation of a mobile robot

and not for more foresighted navigation as in our application.

Several frameworks for navigation prediction use neural networks, e.g., Alahi et

al. developed an approach to predict the future trajectory of people based on their past

positions using an LSTM for crowded spaces [8]. Pfeiffer et al. followed a similar95
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approach to create a data-driven interaction aware motion prediction system using an

LSTM, which was trained by demonstrating typical human motions [15]. These ap-

proaches are mostly suited for crowded spaces where the robot needs to anticipate the

intermediate behavior of many humans to avoid collisions or other undesired behavior.

Another possible implementation of a long-term prediction framework is Bayesian100

filtering, as demonstrated by Glover et al. [16]. The authors proposed a method to ex-

tract the navigation goal of a user based on their walking activities for a robotic walking

aid. The authors accomplished this by using Bayesian filtering in combination with a

hierarchical Markov model trained on typical user movements. Similarly, Best and

Fitch applied a Bayesian framework to estimate the navigation goal and future trajec-105

tory of a mobile agent in a static environment by assuming that the agent is traveling to

predefined goal locations on the shortest path [17].

Social forces were also often seen as driving factor for movement predicting, espe-

cially in crowded scenarios. One of the earliest approaches was presented by Helbing

et al. [18]. The main idea is to balance accelerating forces towards desirable states and110

decelerating forces away from obstacles and other humans. A newer approach using

this idea is presented by Rudenko et al. who propose a weighted random walk algo-

rithm in which each agent is locally influenced by social forces of other agents [19].

These models are again mostly used for crowded spaces with multiple humans. A fa-

miliar idea is presented by Karaoğuz et al., who proposed a human-centric partitioning115

of the environment by identifying objects that are commonly associated with frequent

human presence and creating regions around them [20]. In contrast to our activity re-

gions the authors used the interaction frequency as classification criteria while we use

proximity and composition based classification based on previously collected human

feedback.120

While object-based prediction, to the best of our knowledge, has not been applied

in existing motion prediction systems, this concept has often been used in the context

of higher-level action prediction [21, 22]. In these frameworks, predicted actions are

typically associated with objects, e.g., if a person holds a plate the next action will

likely be setting the plate on some kind of surface or table. Those approaches have been125

used successfully in a local context but the authors did not consider general human-
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object interactions including moving to other places. Action recognition frameworks

are also steadily improved, as they are essential for robots living and collaborating with

humans on a daily basis. A recent publication in this field is given by Duckworth et

al. [23]. The authors present a framework that uses low-dimensional representations130

of human observations from a mobile robot to learn and identify human activities in

visual data.

3. Identifying Activity Regions

We aim at predicting the navigation goal of a moving human based on knowledge

about typical object interactions. One observation is that humans often interact with135

multiple objects in close proximity before starting to move to the next navigation goal.

As an example, consider office work, where a human typically simultaneously interacts

with a chair, table, and laptop before moving to some other place. In our previous

work [7], we modeled this as three different object interactions, first an interaction

with a chair, then with the table, and finally with the laptop. This resulted in multiple140

new navigation goal predictions in a very short time. To achieve a better generalization,

we now propose to group objects together into so-called activity regions and describe

in this section how to identify such regions. First, we consider objects that “overlap”,

i.e., objects for which depth values are approximately equal such as a table and objects

on top of it as belonging to the same activity region. However, often objects that do not145

overlap are also used in combination for an activity, e.g., a chair and a table.

To define activity regions that make intuitively sense to humans we performed an

online survey on how humans perceive activity regions and how specific activity re-

gions are composed. In the remainder of this section we discuss both, the design of the

survey as well as the results.150
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3.1. Design of an Online Survey to Identify Activity Regions

We created the survey1 using Qualtrics [24] and published it on Clickworker [25].

The survey was online for one week and during this time 125 users participated. We

included an attention test, which was passed by 106 german participants from a cross

section of the population [26]. Responses from users that did not pass the attention test155

were excluded.

We included three different types of questions inside the survey. We first showed

the participants pictures of office environments with given, color-coded groupings for

different objects and asked them which of the options felt most natural to them (see

Fig. 2 for an example), to gain insight of possible subconscious classification rules.160

We used 15 questions of this type and randomized their order as well as the order of

possible answers.

For the second part, we asked the participants which objects they consider to be

close to given objects. The participants had to indicate the likelihood of ten objects

to belong together on an even Likert scale, which had six options ranging from very165

unlikely in close proximity to very likely in close proximity. We used seven questions

of this type including the one which serves as attention test. Questions and possible

answers were again randomized.

In the last part of the survey, we were interested which, if any, objects humans

associate with two example activities: food processing and office work. Participants170

could choose between 15 different objects: table, refrigerator, PC, chair, toilet, lamp,

shelf, sink, washing machine, sofa, microwave, white board, dresser, coffee maker,

bed. The chosen objects should then be ordered based on their associated importance

for the given task. We chose these example tasks as they represent activities where the

robot would possibly be able to provide assistance.175

1The survey was published in German, a complete copy of it can be found on our website: https:

//www.hrl.uni-bonn.de/publications/activity_region_survey
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(a) (b)

Figure 2: Example question of our survey. The participants were asked which one of the two object groupings

appeared more natural to them, with the hope of gaining insight of possible subconscious classification rules.

We recorded 106 answers to this question. 72 participants voted for option (a) while 34 voted for option

(b). This corresponds to a p-value smaller than 0.01 with the One Sample Chi-Square Test for this particular

question and does therefore imply a significant preference for option (a).

3.2. Results of the Survey

The results of the survey2 match our expectations as we can see a clear trend to

group specific objects together. This trend is especially strong with chairs and tables,

as chairs were grouped with the nearest table even if it was more than two meters away.

Overall we asked five different questions regarding the grouping of chairs to tables180

with table-chair distances ranging from less than one meter to more than two meters.

In 66% of the answers the chair was grouped with the nearest tables regardless of the

distance.

No significant difference could be observed regarding the grouping of tables, as

neither the grouping nor the non grouping scenario seems to be preferred by the user.185

Fig. 3 shows an example of a question regarding possible groupings of close tables.

We also found a clear classification of objects into the two example activity classes,

office work and food processing, as can be seen in Fig. 4 and Fig. 5 respectively. This

supports our theory that grouping objects into regions related to activities matches typ-

2We published the complete results of the survey on our website https://www.hrl.uni-bonn.

de/publications/activity_region_survey_results
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(a) (b)

Figure 3: Example table grouping question from our survey. Participants were asked if they found grouping

(a) or grouping (b) more natural. We recorded 106 answers to this question. The results were exactly split

as 53 participants voted for option (a) and the remaining 53 for option (b).

ical human behavior.190

In summary, we found that our participants indeed tend to group objects based on

proximity and functionality, that objects in the same group will in most cases not be

further away than 2 meters from each others center, and that our participants could

clearly identify objects that they would expect inside two example activity regions.

Using these results, we built a proximity based rule system to automatically identify195

activity regions on a semantic map, as we describe in the next section.

4. Prediction of Navigation Goals

As explained above, we consider the problem of predicting the navigation goal of

a moving human in an indoor environment. Our prediction is based on observations of

the human’s location and pose as well as on prior knowledge about a map of the envi-200

ronment and typical human transitions between objects. To obtain the prior knowledge,

we propose to learn a semantic map of the environment [27] and afterwards group the

objects into activity regions, as discussed in Section 3.

Furthermore, we use pre-recorded videos of humans acting in indoor environment

to train a prediction model for transitions of human-object interactions. In other words,205

we learn a model to predict how likely it is that a human who interacted with object A

will next interact with object B and call this the interaction model. The training videos
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Figure 4: Responses of the 106 survey participants regarding the question which objects they expect in an

office environment. As can be seen, there is a clear expectation towards the objects: table, chair, shelf, PC,

lamp, and white board.

for which we hold the associated rights are published with the Bonn Activity Maps

dataset [28].

Based on this prior knowledge and observations about the user’s location and pose,210

we then apply Bayesian inference to predict their next navigation goal.

As application scenario we use a Robotino mobile platform [29], equipped with a

RealSense D435i RGB-D camera [30] and a laser scanner. However in principle the

system can be used on any RGB-D camera system, even without a robot.

In the following, we explain all components of our prediction framework in detail.215
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Figure 5: Responses of the 106 survey participants regarding the question which objects they expect in a food

processing environment. As can be seen, there is a clear expectation towards the objects: table, refrigerator,

microwave, and coffee maker.

4.1. Semantic Environment Representation

We represent the environment as a static inflated occupancy map [31], with an ad-

ditional semantic layer to encode objects and activity regions. The occupancy mapping

can be realized with a common SLAM approach [32]. Object information was added

to the map through semantic mapping by using RGB-D masks from CNN object de-220

tectors and projecting them to the 2D plane [27]. To infer activity regions for a map

we use a rule-based system. First, we assign each object its own activity region. If

two regions overlap, i.e., have overlapping object bounding boxes with similar depth
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(a) (b)

Figure 6: Example of the generation of activity regions. (a) a semantic map which contains 23 objects, (b)

grouping of all objects which centers are less than 2 meters apart from each other into the same activity

region. This results in 5 different activity regions, shown as bounding boxes around the objects.

values of points inside them (the average depth values differ by at most 5%), we merge

them. The new region then consists of all objects of the previous regions. This process225

is repeated until no more regions can be merged. Second, we use the results of the

survey discussed in Sec. 3 by merging activity regions that are less than 2 meters apart

from each others center. The final environment representation consists of the inflated

occupancy map M , the position Xo and type τo of each object o = (Xo, τo) as well

as the position XR and object composition CR = {oa, ob, . . . } of each activity region230

R = (XR, CR). We define the position of an activity region XR as the center of the

bounding box around all objects inside the region. Fig. 6 shows an example of activity

regions for a previously recorded semantic map. Note that the human is not part of the

map nor is the map updated during the prediction steps.

4.2. Interaction Model235

We define the interaction model I(τa|τb) as the distribution that describes the prob-

ability that a human which previously interacted with an object of type τb will next

interact with an object of type τa. To train the model, we collected data of users in

indoor environments and recorded their object interaction sequences as described in
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detail in our previous work [5]. Note that to generalize well between different environ-240

ments, we only consider object-interaction sequences to learn the interaction model and

do not consider the actual trajectories of the human. As we use I as prior knowledge,

it is not further updated once learned. This concept can be extended to activity regions

by defining the transition probability between two regions Ra and Rb as a function of

the transition probabilities between the objects of these regions. We hereby use the245

normalized sum of all transition probabilities between objects of different types in the

individual regions. In other words, if two chairs are present in region A and one sofa

in region B, we will only count the transition probability of one chair towards the sofa.

Formally, the regional interaction model IR(Rb, Ra), which encodes the probability

that a human that interacted with an object from activity region Ra will next interact250

with an object from activity region Rb, is defined as follows:

IR(Rb|Ra) = η ·
∑
x∈Tb

(
∑
y∈Ta

I(x|y)) (1)

With η as normalizing parameter and Ta =
⋃
τo
CRa

and Tb =
⋃
τo
CRb

as the sets

of unique object types present in Ra and Rb, respectively. Note that, as the positions

of objects and activity regions is given as prior knowledge, we can directly infer with

which activity region a human is interacting by observing a specific object interac-255

tion. Thereby the actual class of the object with which the user interacted is relatively

irrelevant, as we only need to detect that an interaction did occur.

4.3. Observations About the Human

The interaction model on its own is not sufficient for a reliable prediction of the

next navigation goal of the human, as it does not consider their position and orientation260

after the interaction took place.

Thus, we use RGB-D observations from the robot to obtain information about the

human. We first detect the human and their pose using a pose estimation system (Open-

Pose [33]). Once the human is detected, we use the robot’s laser data to determine the

distance to the robot. Using the known position of the robot, we can now infer the265

position Xh of the human. For the orientation of the human θh we use pose data to
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track the face and shoulders. We then infer the general direction the human is orien-

tated to, as shown in [5]. The complete state of the human at the current time step is

defined as S := (Xh, θh). Note that for simplicity we currently consider scenarios in

which only one human is present, however our approach can be extended to work with270

multiple humans, as long as these can be distinguished. Identifying a specific human

could also be a powerful cue as it would be possible to use a tailored interaction model

for individual users, possibly increasing the prediction accuracy of our approach.

4.4. Bayesian Inference

We use Bayesian inference based on the prior knowledge about likely transitions of275

the human between activity regions in combination with the continuous observations

about the human’s state and last interacted object, to predict the human’s next naviga-

tion goal. The prior probability of an activity region P (Ri) is given by the pre-trained

regional interaction model IR(Ri|RL) between the activity region which serves as pos-

sible navigation goal Ri and the activity region in which the last object interaction was280

observed RL.

Let R be the set of all activity regions on M . The probability that the activity

region Ri is the human’s navigation goal given the current observation of their state S

is given as:

P (Ri|S) =
P (S|Ri)P (Ri)∑

Rj∈R P (S|Rj)P (Rj)
(2)

Using η as a normalizing parameter Eq. (2) can therefore be simplified to:285

P (Ri|S) = η · P (S|Ri)IR(Ri|RL) (3)

Note that it is possible that the robot did not observe the last interaction. In this

case, we use the marginalized region interaction probability over each possible activity

region:

IR(Ri) =
∑
Rj∈R

IR(Ri|Rj) (4)

This modifies Eq. (2) in the case of no observed interaction to:

P (Ri|S) = η · P (S|Ri) · IR(Ri). (5)
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In both Eq. (2) and Eq. (4), P (S|Ri) corresponds to the likelihood of the human’s

observed state S := (Xh, θh) given the possible navigation goal Ri. To evaluate this

likelihood, we use the assumption that the user moves on the shortest A* path towards

their navigation goal. We therefore compute the shortest 2D A* path Ph→Ri
from

the user’s position Xh to the center of the region XRi . Furthermore, we compute the290

2D orientation difference ∆a(θh, θopt) of the human’s current orientation θh and the

orientation θopt the human would have if they moved to the next position on Ph→Ri
.

Let L(Ph→Ri
) be the length of the path Ph→Ri

. With an added value of 1 to avoid a

situation in which we would divide by zero, the observation likelihood P (S|Rj) can

then be defined as:295

P (S|Rj) = (L(Ph→Ri
) + 1)−1 · (∆a(θ, θopt) + 1)−1. (6)

Combining all equations, the probability P (Ri|S) that the activity region Ri is the

navigation goal of the human given the prior knowledge is defined as

P (Ri|S) = η · (L(Ph→Ri
) + 1)−1 · (∆a(θ, θopt) + 1)−1IR(Ri|RL) (7)

if the last object interaction was observed and otherwise as

P (Ri|S) = η · (L(Ph→Ri
) + 1)−1 · (∆a(θ, θopt) + 1)−1IR(Ri) (8)

The belief about the navigation goal is updated in a constant interval as long as

the human is visible and moving. For our implementation we chose an interval of 5300

seconds.

5. Experimental Evaluation

We evaluated our framework based on the accuracy of the prediction in regards to

the human’s true navigation goal. We performed a quantitative and qualitative evalua-

tion as well as a comparison to previous approaches. Furthermore, we demonstrate the305

applicability of our system to foresighted robot navigation in a real-world experiment.
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5.1. Data Collection

To guarantee comparability of different approaches and eliminate noise in the ob-

servations, we performed the majority of our experiments in simulation. Using the

V-REP editor [34], we created 10 different office and home environments with sizes310

between 100m2 and 150m2, modeled after real-world examples. Each environment

contains up to 110 different objects from 16 different objects classes: bottles, cups,

microwaves, chairs, tables, beds, toilets, handbasins, bathtubs, washbasins, cupboards,

wardrobes, refrigerators, sofas, and laptops. Note that as explained in our previous

work [5], the detector we use is able to register interactions with the 510 different ob-315

jects and animals from the Open Image dataset [35] using an R-CNN trained on the

dataset. However, as some of these objects are usually not perceived inside an office

or home environment or were underrepresented in our training set for our interaction

model we restricted the number of objects for the evaluation. We trained the object in-

teraction model with a set of 161 recorded human-object transitions [5] from which we320

then determined the regional interaction model. Furthermore, we collected a dataset

of 64 typical human transitions between two objects, based on recorded movements

within our real test environments as well as a survey about typical indoor movements

inside our simulated home environments. As mentioned in Sec. 4, the videos for which

we hold the associated rights are published with the Bonn Activity Maps dataset [28].325

We used the data to randomly sample 300 transitions between objects. Based on

these transitions, we computed 300 different trajectories distributed over all environ-

ments using A*. The simulated trajectories were then used as test data for the quanti-

tative evaluation, the recorded real-world transitions between objects were used for the

qualitative evaluation.330

5.2. Quantitative Evaluation

For the quantitative evaluation, we tested our approach on 300 test trajectories in 10

different office and home environments, as described in Sec. 5.1. Each trajectory had

on average 64 different possible goal objects, grouped in 19 different activity regions.

Fig. 7 shows an example of one of our office maps with a test trajectory and possible335
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Figure 7: Sketch of an example simulated office environment from the qualitative evaluation. Objects are

shown in gray with activity regions in light gray on top of them. An example trajectory from the starting

position of the user (violet circle) near a coffee machine to an office is shown as dotted line (violet). Us-

ing activity regions, the number of navigation goals that the robot needs to consider shrinks from 93 (the

number of objects present) to 27 (the number of activity regions). This map is based on a real-world office

environment at the Computer Science Department of the University of Bonn.

navigation goals. For the first evaluation, we assume that the human is always observ-

able during their movement and that the robot has perfect observations, i.e. the prob-

ability for false positive or negative observations is 0. Once every second our system

makes a prediction about the human’s most likely navigation goal and compares this

prediction to the human’s true navigation goal. We use this general prediction accuracy340

as standard metric in the evaluation and, furthermore, evaluate a variant called top 5%

accuracy. Here, we count a prediction as correct if the true navigation goal is among

the returned top 5% of most likely navigation goals. We chose this metric to show that

even if our approach temporarily predicts a wrong navigation goal, the true navigation

goal is often still among the top 5%. On average three navigation goals are within this345
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range. Additionally, we used the A* distance from the center of the prediction naviga-

tion goal to the true navigation goal of the user as metric. This metric provides insight

in the severeness of false predictions, as wrongly predicted destinations might still be

close to the true navigation goal.

We evaluated our region-based approach both with and without a known initial350

object interaction, as specified in Eq. (7) and Eq. (8) respectively. For comparison,

we also performed the experiments with our previous approach [7], which does not

use activity regions and uses objects instead of activity regions as possible navigation

goals, as well as with a trajectory-based prediction approach [6], which does not use

information about object interactions and does not consider the orientation in the pre-355

diction. Activity regions are navigation goals for our approach and the trajectory-based

approach [6], while single objects are possible navigation goals for our previous object-

based approach [7]. Both our activity region and object-based approach use the same

interaction model trained on 161 recorded human-object transitions for all maps. The

trajectory based approach needed a further training for each of the 10 maps using 30360

additional sampled trajectories for each map. The results of the quantitative evaluation

are shown in Table 1.

As can be seen, the use of activity regions improves the average prediction accu-

racy by 0.15 if the last interaction was observed, in comparison with our previous work

without them [7]. Similar results are achieved if the last interaction was not observed,365

here we achieve an improvement of 0.20. Both results are statistically significant based

on the paired t-test. An interesting result is the closing of the gap between the general

prediction accuracy and the top 5% prediction accuracy. In our previous approach

without activity regions, there is a difference of 0.15 between the two metrics if the last

interaction was observed, this shrinks to 0.03 if activity regions are used. The effect370

also exists if the last interaction was not observed. This implies that cases in which the

true navigation goal was not the most likely one but is among the top 5% most likely

goals, it is in many cases part of the most likely activity region. An example for this

would be a resting area with a table and a chair. Both object types are commonly used

together but only one can be the most likely goal object. If we use activity regions,375

this problem disappears, as in this case the human interacts with the region consisting
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Avg. General Avg. Top 5% Avg. Dist to

Prediction Accuracy Prediction Accuracy True Nav. Goal [m]

Last interaction

observed 0.68 0.71 5.06

Last interaction

not observed 0.64 0.66 5.74

Last interaction

observed [7] 0.53 0.68 5.09

Last interaction

not observed [7] 0.46 0.66 5.63

Trajectory-based

approach [6] 0.36 0.57 6.86

Table 1: Results of the quantitative evaluation. The first two rows represent the results of our approach with

activity regions. The third and forth row show the results of our previous work [7] with single objects instead

of activity regions and the last row shows the results of the trajectory-based apprach [6].

of both objects. The average distance between the predicted and true navigation goal

supports this theory. The resulting distances for our current and previous approach are

very close together. We interpret this as a sign that false predictions in our previous

approach correspond in most cases to objects which are now grouped inside the same380

activity region. Note that even if the improvement in the actual distance is small, the

significant gain in accuracy may be very important depending on the application sce-

nario. One example would be a service robot that needs to infer the n-th destination of

the user based on previous interactions [36]. The more accurate and simplified scenario

of activity regions would be much more suitable for such a scenario than the more com-385

plex approaches with objects as destinations or learned trajectories. In comparison to

the trajectory-based reinforcement learning approach that does not explicitly consider

object interactions [6], we achieve an improvement of 0.32 for the average accuracy

and an improvement of 0.14 for the top 5% metric with our new method considering

the activity regions. Furthermore we were able to reduce the average distance between390
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(a) (b)

Figure 8: (a) change of the average prediction accuracy, (b) average distance between the predicted and true

navigation goal with false observations. As can be seen, the accuracy and distance decrease linearly for all

evaluated approaches.

the predicted and true navigation goal by 1.8 meters.

We further performed an evaluation with noisy observations. We added a false

observation probability to model how likely it is that the robot observes a random user

pose during an update step, instead of the correct observation. If the human would

normally not be visible for the robot at the chosen position the observation information395

are discarded and only the prior knowledge is used. A false observation probability

of 1 depicts a scenario in which all observation information are randomly chosen, i.e.

the robot thinks that the user has a randomly chosen visible position on the map with a

random orientation or no information about the user’s orientation and pose. The results

of this evaluation are shown in Fig. 8. As can be seen, all approaches perform linearly400

worse with a higher likelihood of false observations. The activity region and trajectory

based approaches perform slightly better, but this is likely due to a smaller number of

possible goal locations in comparison with the object-based approach. However, the

results also show that our approach is able to yield an average prediction accuracy of

more than 0.6 up to a 40% probability of false observations.405
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5.3. Qualitative Evaluation

To evaluate the importance of individual observations at different times during the

movement of the human, we analyzed how the returned probability of the true naviga-

tion goal changes over time. Fig. 9 shows the evolution of the probability with respect

to the position of the human on a typical test trajectory for which the last object inter-410

action is known. As can be seen, at a position after roughly 40% of the trajectory the

true navigation goal is continuously returned as the most likely navigation goal. This

effect is observable within the whole dataset, once the true navigation goal is identified

as the most likely goal it does not change anymore in almost all cases. This highlights

an interesting property of our approach. The importance of observation decreases the415

closer the human gets towards their navigation goal. Once the last 60% of the trajec-

tory are reached the predicted goal region doesn’t change anymore. As we do not know

how long the final trajectory of the user will be, we cannot directly use this knowledge.

Fig. 10 shows an example of a typical human trajectory and the evolution of belief

over time.420

5.4. Application

A framework for predicting human movements is essential for foresighted robot

navigation [1]. To highlight this use case, we combined the presented system with

a positioning approach. We tested our framework on a Robotino mobile platform

[29] equipped with an RGB-D camera and a laser scanner in a university environment.425

The robot uses a grid map representation of the environment with a discretization of

0.75 meters to decide where to place itself in order to provide assistance to the human

if needed while simultaneously avoiding interferences. The prediction is updated every

5 seconds. To compute the optimal position of the robot, we use the average distance

between all possible navigation goals weighted by their probability while avoiding po-430

sitions in a 1.5m radius around the human. We use a function C(X , S) to compute the

costs of each possible robot position X on M based on the current observation of the
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(a) Example trajectory for which the evolution of

the goal probabilities is shown to the right. Ob-

ject names are abbreviated: dining table (T), mi-

crowave (M), bed (B), chair (C), and sofa (S).

Activity regions are given as colored shades, the

darker the color the higher the likelihood.

(b) Evolution of the belief about the navigation

goal with respect to the percentage of the ob-

served length of a typical trajectory, which is de-

picted on the left.

Figure 9: Example of a recorded trajectory from our dataset in a simulated environment. In this case,

the human first interacts with a refrigerator and then moves to a chair-table activity region. (a) Trajectory

observed so far at the point where the prediction is correct for the first time. (b) Corresponding evolution of

the belief about navigation goal.

human S := (Xh, θh) and prior knowledge:

C(X , S) =

∞ if dist(X ,Xh) < 1.5m∑
Ri∈R((1− P (Ri|S)) · dist(X ,Xh)) else

(9)

With dist(Xa,Xb) as the Euclidean distance between the positions Xa and Xb in

meters. The position with the lowest cost is then used as new destination for the robot.435

Fig. 11 illustrates an example experiment. Here, the robot i initially in a corri-

dor where it observed a human-object interaction with a cup. The robot then up-

dates the prediction about the navigation goal and computes a new position for it-

self based on Eq. (9) (see Fig. 11 (a)). During the movement, the robot regularly

updates both, the prediction of the navigation goal as well as the cost of possible posi-440

tions (see Fig. 11 (b)). In Fig. 11 (c), the human has entered the room containing the
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(a) (b)

(c) (d)

Figure 10: Evolution of the belief over time for an recorded human trajectory from our dataset in a simulated

environment. As can be seen, the initial belief based on the interaction model (a) is continuously updated

with new observations (b), (c), (d). Objects are shown in green and activity regions in coloured shades with

their probabilities to be the navigation goal: the darker the green the higher the probability. Doors are colored

in grey and walls in dark grey. The human is depicted as a blue dot with their trajectory as dashed line.

navigation goal and the robot correctly updates its prediction. The robot does not enter

the room itself since positions near the human have infinite weight. However, if the

human called the robot to help them, the robot would be there immediately due to its

foresighted positioning. As a result, the robot can avoid interference but is still close445

to the human to react quickly if needed.

We further tested this application in our simulated environment, using the same

environments and trajectories as in Sec. 5.2. We assumed that the human is always

observable for the robot as well as perfect sensors, i.e., a false positive observation

chance of 0. We configured the user to travel with an average velocity of 1ms and the450
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(a) (b) (c)

Figure 11: Application example of our approach to foresighted navigation. Objects are shown in green and

possible placement positions for the robot are shown in blue. Activity regions are given in coloured shades.

The orientation of the robot (orange circle) and user (blue circle) is indicated by a black line. The darker the

color the lower the costs. (a) The robot observes a moving human that has previously interacted with an ob-

ject inside an office activity region. Based on this information, it updates the belief about the navigation goal

and computes a new position for itself (orange ring) taking into account the human’s most likely navigation

goals while avoiding interference with the human and their predicted path. (b) The prediction as well as the

robot’s placement position are updated with new observations. (c) The human enters a room and the robot

adapts its position to be close to the human in order to enable quick reaction when called for assistance.

robot to travel with 2ms . As metric we used the average arrival time difference between

the user and the robot when they first entered an area 1.5m around the goal activity

region. We found that the robot arrived on average 8.5s before the human.

6. Discussion

As shown in Sec. 5, our framework reliably predicts the navigation goal of a moving455

human. Our approach can be used in any indoor environment without the need of

specific training, as long as the relevant objects and their transition probabilities are

known. However, there are also typical cases where our method leads to ambiguities,

e.g., if two likely goal regions lie on the same path and the latter is the true navigation

goal. In order to approach the true navigation goal, the human naturally also approaches460
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the first equally likely navigation goal. Therefore, our framework has no means to rule

out the wrong navigation goal until the human passes by. We plan to solve such cases

in the future by further enhancing the prior knowledge by learning better interaction

models. Furthermore we also plan to distinguish objects based on the activity that

the user performs at them, for example by ignoring objects in our prediction at which465

the user does not need help of a service robot and instead directly predicting the next

destination at which the user will need assistance.

Other possible improvements of our system could involve an improved detection

of human-object interactions, e.g. by the utilization of smart home systems and their

detection capabilities.470

7. Conclusion

In this article, we presented an approach to predict the navigation goal of mov-

ing humans in indoor environments. We proposed to use knowledge about typical

human-object interaction sequences and to group close-by objects into activity regions

to achieve generalization. To get information about typical activity regions in indoor475

environments, we performed and evaluated an online survey with 125 participants.

To learn the object interaction model our system uses for the prediction, we ob-

served humans in indoor environments and learned transition probabilities between

object interactions. We then utilized this information in combination with observations

about the human’s pose to infer the navigation goal using Bayesian inference.480

As we demonstrated in various experiments, our framework reliably predicts the

navigation goal of a moving human. By using transitions between the activity regions

in contrast to single object transitions, we achieve a significant increase in the predic-

tion accuracy. Furthermore, we show that our system outperforms a trajectory-based

prediction approach that relies on previously learned trajectories between fixed desti-485

nations. Finally, we performed an experiment in which a mobile robot uses the new

framework for foresighted navigation by computing favorable positions for itself taking

into account the navigation goal prediction.
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