
Enhanced Spatial Attention Graph for Motion Planning
in Crowded, Partially Observable Environments

Weixian Shi Yanying Zhou Xiangyu Zeng Shijie Li Maren Bennewitz

Abstract— Collision-free navigation while moving amongst
static and dynamic obstacles with a limited sensor range is
still a great challenge for modern mobile robots. Therefore, the
ability to avoid collisions with obstacles in crowded, partially
observable environments is one of the most important indicators
to measure the navigation performance of a mobile robot. In
this paper, we propose a novel deep reinforcement learning
architecture that combines a spatial graph and attention rea-
soning to tackle this problem. We take the relative positions and
velocities of observed humans as nodes of the spatial graph and
robot-human pairs as nodes of the attention graph to capture
the spatial relations between the robot and the humans. In this
way, our approach enhances the modeling of the relationship
between the moving robot, static obstacles, and the people in the
surrounding. As a result, our proposed navigation framework
significantly outperforms state-of-the-art approaches [1], [2] in
crowded scenarios when the robot has only a limited sensor
range in terms of a reduced collision rate. Furthermore, we
realize a seriously decreased training time by applying parallel
Double Deep Q-Learning.

I. INTRODUCTION

With the rapid improvement of artificial intelligence, mobile

robots are not only required to move safely in a static

environment but also navigate smoothly in human crowds,

which is a challenging problem [3]. Recently, approaches

based on deep reinforcement learning (DRL) have been

proposed and achieved success in simulated scenes [1], [2],

[4], [5]. However, most of the methods assume that all the

humans are observable during the entire navigation process.

To deal with realistic conditions, we aim at creating a action-

learning-based model for robot navigation in only partially
observable human crowds.

Robot navigation is a hard task mainly for the follow-

ing reasons. First, navigation in human crowds is not a

centralized problem, which means that the agent is not

able to know the other agents’ policies and goals. Instead,

the agent can only estimate the information by prediction

based on their observable states such as position, speed,

etc. Second, an environment usually contains both static and

dynamic agents. Each of them might interact with some of

the others implicitly during the whole navigation process,

meaning their goals might change at any time. Finally, since

the environment is generally partially observable, the robot

cannot obtain all humans’ states, resulting in higher uncer-

tainty on the environment modeling. Although robot crowd

navigation is challenging, previous approaches have already

All authors are with the University of Bonn, Germany. This work
has partially been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy, EXC-
2070 – 390732324 – Phenorob and BE 4420/2-2 (FOR 2535 Anticipating
Human Behavior).

Fig. 1: Motivation for our work. During navigation, the robot
can only observe the humans in the indicated sensor range. We
process the relation between the robot and observed humans into
two graphs: First, we treat the positions and velocities of the humans
relative to the robot as nodes of the spatial graph. Second, we regard
each robot-human pair as a node in the attention graph. By combin-
ing the two graphs in a deep reinforcement learning architecture,
the robot’s navigation behavior is significantly improved wrt. the
state of art.

achieved success in some aspects. Initial work [6]–[10] used

hand-designed techniques to avoid collisions. These methods

usually apply the one-step-look-ahead strategy to determine

the next best action. However, they are too shortsighted and,

thus, often yield sub-optimal solutions in complex scenarios.

With the help of DRL, more recent work has lead to systems

that can successfully navigate to target locations without

any heuristics. These approaches can be roughly divided

into two main branches: methods based on trajectory [11]–

[13] and methods based on action learning [1], [2], [4], [5].

The former first predict the other agents’ future trajectories,

then make decisions based on the predictions. However,

they are usually too computationally expensive for real-time

applications. Methods based on action learning instead use

collected observations to decide on the next action directly.

In this paper, we present a new method, called Enhanced

Spatial Attention (ESA) graph, based on action learning for

robot navigation in crowded, partially observable scenes.

We model the high-level relationship with both spatial

Long Short-Term Memory (LSTM) [14] and attention tech-

niques [15], and train the network with Double Deep Q-

learning (DDQN) [16], [17]. We first model the crowd

navigation scenario as a decentralized spatial graph to encode

the spatial relations between the robot and the other agents.

Furthermore, we capture the importance of each robot-human

interaction to form an attention graph. Finally, we combine

both graphs to generate the robot’s next action.



Our main contributions are the following: (1) A novel DRL-

based algorithm that uses a spatial graph as a parallel

branch of the modified attention graph [1], resulting in a

significantly lower collision rate and a higher success rate

while keeping a similar navigation time compared to state-

of-the-art methods [1], [2]. (2) By removing the imitation

learning using ORCA [7] as the expert, and replacing deep

V-Learning with parallel DDQN [16], [17], we eliminate

the bad effect caused by the imperfect demonstration and

seriously decrease the training time compared to [1]. The

source code of our framework is available at:

https://github.com/weixians/esa.

II. RELATED WORKS

The mobile robot’s crowd navigation problem is complex

since the environment is partially observable and the robot

cannot directly acquire each human’s implicit goal and

behavior policy directly. Recent works for this problem can

be roughly divided into three categories: methods based on

reaction, methods based on trajectory, and methods based on

action learning.

Reaction-based methods. Methods based on reaction for

dynamic environments started many years ago. Reciprocal

Velocity Obstacle [6] and ORCA [7], [8] design patterns

under the assumptions of knowing each other’s information

and avoid collisions reciprocally. Social Force [9] model the

crowd interaction relationships with attractive and repulsive

forces. Also, Interacting Gaussian Process [10] models each

agent’s trajectory as an individual Gaussian process and then

couples them. Yet these methods rely heavily on heuristics

and they are often shortsighted and face the freezing robot

problem, especially in more complex scenes.

In contrast, based on deep reinforcement learning, our ap-

proach does not need to design any heuristics and the agent is

able to formulate the humans’ implicit relations, encouraging

the robot to consider long-term values, thus, it learns a better

collision avoidance behavior and reduces the freezing robot

problem.

Trajectory-based methods. Methods based on trajectory

first try to predict the other agents’ future trajectories, thus

allow the planner to look into the future for decision making

[11]–[13]. For example, by combining Gaussian process and

RRT-Reach, RR-GP [11] learns a motion pattern model

to identify probabilistically feasible paths and enables the

vehicle to navigate more safely in a complex environment.

Based on the predicted trajectories, agents can have a

long-sight view to make better decisions. Chen et al. [18]

presented a relational graph learning on the robot-crowd

interactions using Graph Convolutional Network (GCN) [19].

Furthermore, Kretzschmar et al. [12] modeled humans’ be-

havior in accordance with a mixture distribution to capture

their discrete navigation decisions for exploring available

trajectories to the goal position. However, this approach is

computationally expensive especially when there are many

other agents, as is needs to predict each individual’s tra-

jectory. Additionally, since the agent can only have partial

observations of the environment the resulting strategies might

be too conservative. In contrast to that, in our work we do

not rely on a prediction about the other agents’ trajectories

but decides on actions directly based on the observations.

Methods based on action learning. Methods based on

action learning are recently prevalent ways to achieve good

performance in crowd navigation. CADRL [4] and SA-

CADRL [5] were the earliest works replacing manual de-

sign techniques with DRL and achieve success in two-

agent scenarios. However, They are still based on reciprocal

assumptions and achieve limited results in complex decen-

tralized scenarios. LSTM-RL [2] uses LSTM cells to encode

other agents and combine the agent’s state for planning.

Chen et al. [1] proposed an attention-based mechanism to

compute attention weights for all robot-human interactions

in the environment and their approach, called SARL, makes

decisions based on the attention scores. Taking supervised

imitation learning as a warm start, Chen et al. also in-

corporate deep V-Learning for training the network which

generates next best action with the help of one-step-look-

ahead to calculate values for all possible actions. These

methods, however, assume that the agent can observe all the

agents in the surrounding, which is not reasonable for real-

world environments. Furthermore, Deep V-Learning is much

more time-consuming than Deep Q-Learning [16], [20].

To tackle the problems above, we propose a new policy

network trained by DDQN [16] to navigate in partial ob-

servable environments. Further, we show that incorporating

a spatial graph encoding spatial relations between the robot

and humans and an attention graph in the network improves

the performance in challenging crowded navigation scenarios

compared to previous methods.

III. OUR APPROACH

In this section, we first describe the assumptions, the ob-

servations, and how we formulate the decision-making on

the robot’s actions for navigation in crowded scenes as a

DRL problem. Then, we introduce our approach to model the

crowd navigation scenario as a spatial graph and an attention

graph. Finally, we explain how our architecture combines

these two graphs.

A. Problem Formulation

Assumptions. Consider a holonomic robot navigating in a

partially observable environment with other dynamic and/or

static humans. We suppose all the agents moving in a 2D

Euclidean space and assume that the robot’s action command

in terms of a velocity pair (vx, vy) can be executed instantly

and accurately, meaning that the agent’s velocity will change

immediately when the action is executed. Moreover, the robot

is assumed to be invisible to the humans since we assume

the humans are moving according to the rule of ORCA [7],

[8] and, thus, would react to the robot to avoid collisions. As

a result the robot would only learn to move straight towards

the goal position. Compared to previous work [1], [2], [4],



Fig. 2: Illustration of our neural network architecture. The spatial graph part of the network shows how we use an LSTM [14] to encode
the spatial relations between the robot and other humans. We first sort each observed human by descending order of the weighted sum
of current distance and possible future distance, then take their states (positions and velocities) as cell inputs into the Recurrent neural
network. While in the attention graph part, we concatenate robot state and i-th human’s state as inputs and formulate the interactions
by the embedding network MLPe and attention network MLPa. Finally, the network takes the two modules’ output as inputs and offers
action values as the action-making indicator.

[5], we do not assume that the robot can observe all other

agents in the navigation process. Instead, we assume that

the robot can only acquire states of humans located within

a short sensor rage.

Observation. For training, we first transform the positions of

all agents and velocities to robot-centric coordinates, where

the x-axis points from robot’s current position to its goal

position. We consider the robot’s current velocity (vrx, v
r
y),

maximum speed vmax, and radius r as well as the current

position (pix, p
i
y), current velocity (vix, v

i
y), and radius ri of

the i-th human. Let srt be the robot state and shi,t be the state

of the i-th human at timestep t as defined in the following,

for simplicity, we omit the timestep t:

sr = [dg, v
r
x, v

r
y, vmax, r] (1)

shi = [pix, p
i
y, v

i
x, v

i
y, d

i, ri, r + ri] (2)

where dg is the distance from robot position to its goal

position, and di denotes the distance from the robot to the

i-th human’s position.

Formulation. The robot navigation problem can be for-

mulated as a sequential decision making problem [1], [2],

[4], [5]. We model the relationships between the robot and

humans as a Markov Decision Process (MDP), defined by the

tuple 〈S,A, P,R, γ, S′〉, where S is the state space, A is the

action space, P is the probability transition function, R is the

reward function, and γ is the discount factor which we take it

0.9 in our work. The state st = [sr, sh0 , ..., s
h
N] ∈ S represents

the robot state and the N human states scanned by the robot

range scanner at timestep t, where N(≥ 0) might change

at any timestep. When navigating in an episode, the robot

starts at an initial state s0 ∈ S0. At each timestep t, the robot

takes an action sampled from the learned policy π(at|st) and

transits to the next state on the basis of an unknown state

transition function P (st+1|st, at). At the same time, all other

agents take actions and move to the next state according

to their own policies. After an episode ends, we use Monte

Carlo Value Estimation [21] to estimate the value of the state

at each timestep in the episode. Finally, the optimal policy

π∗ can be formulated as below [1]:

π∗ = argmax
at

[R(st,at) + γ max
a′

Q∗(st+Δt,a
′)] (3)

where Q∗ and Δt denote the related optimal action-state-

value function from DDQN [16] and the length of each

timestep, respectively.

Reward Function. Following previous work [1], [2], [4],

[5], we give a large award for successfully navigating to the

goal position and punish the collisions or too close to other

agents:

Rt (st,at) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if reach goal

−0.25 else if dt < 0

−0.1 + dt/2 else if dt < 0.2

0 otherwise

where dt is the distance between the robot and the nearest

human at timestep t.

Action space. To reduce the complexity and enable the robot

moves smoothly, we divide the rotation range of 2π into



8 parts and its translational speed into 4 steps, and include

(0,0) for stopping, so there are 33 choices for the robot’s

velocity (vx, vy).

B. Network Architecture

The proposed network architecture for our approach is de-

picted in Fig. 2. It consists of two main pipelines processing

three different kinds of inputs: (i) states of the observed static

and dynamic humans who are located in the robot sensor

range, (ii) the robot’s own state, and (iii) the concatenation

of the robot state and each observed human state. The two

pipelines are the spatial graph and attention graph on the

observed humans.

Spatial Graph on Observed Humans. To process the spatial

features of humans, we regard each pair of robot and human

as nodes in the graph, and the edges represent the spatial

relations, as shown in Fig. 3. Many methods based on action

learning for local obstacle avoidance use feed-forward neural

networks to process these spatial relations [4], [5]. However,

they need to fix the size of the input or convert spatial

relations as an occupancy grid map, and then use CNNs [22]

and pooling. But grid maps can be coarse or computationally

expensive if too precise. Here we use an LSTM [14] to

handle the varying number of observed humans and make

each human state sh as the input of the LSTM cells in the

reverse order of the distance to the robot:

hi = LSTM(hi−1, s
h
i ) (4)

where hi is the i-th hidden state of the LSTM network.

We take a balance between the current and estimated next

distances based on the humans’ current velocities as the

criterion to sort the inputs, which is computed as

dist =wc(p
′
x
2
+ p′y

2
)1/2+ (5)

(1− wc)((p
′
x + v′xΔt)2 + (p′y + v′yΔt)2)1/2

where wc ∈ [0, 1] is a hyper-parameter to adjudge the im-

portance between current distance to the robot and possible

future distance. In our experiments, We set wc to 0.8. In

addition, we let the LSTM network remember all human

states by keeping the output hidden state having a large

dimension without spending much extra time. As shown in

the upper part of Fig. 2, we first input the human states into

the LSTM units by a reverse order based on the distance, then

concatenate the LSTM output hidden state and the robot’s

self-state into a multi-layer perceptron (MLP) [23]. Finally,

we get encoded spatial relationships is between the robot

and observed humans.

Attention Graph on Observed Humans. Inspired by the

work of Chen et al. et al. [1], we additionally build an

attention graph on the observable humans to encode each

pair of the robot-human relationship.

To handle varying number of scanned humans on each

observation, we first apply a ReLU [24] activated non-linear

Fig. 3: Illustration of the spatial graph. The light-blue dash-line
circle indicates the robot’s sensor range. The robot is able to
observe the humans’ positions and velocities and forms spatial
connections with the humans who are inside the sensor range.
We take both current positions and future positions computed by
observed velocities into account to determine the importance of
each human’s state to the robot, as indicated by the line width. We
input the states into the recurrent neural network with descending
order of the distance.

transformation on every robot-human interaction pairs and

get the rough embedding features:

ei = MLPe(s
r, shi ) (6)

By feeding each embedding vector ei into another MLP, the

embedding features are transformed into attention weights:

wi = MLPa(ei) (7)

Note that the last layer of MLPa does not contain a ReLU

[24] activation layer, and both MLPe and MLPa share param-

eters when computing each interaction. Compared to SARL

[1], we simplify the network structure by removing deeper

embedding and the mean pooling module, so that we spend

less time but still get similar performance.

We then get the final interaction representation by the product

sum of each pairwise embedding vector ei and attention

weight wi:

a =

N∑
i

wiei (8)

Final Output. After processing information along the spatial

graph branch and the attention branch separately, we build

another non-linear transformation containing ReLU [24] ac-

tivations taking the spatial vector is and attention vector ia as

inputs, and output action values as the current learned path

planning policy indicator:

q = MLPv(is, ia) (9)

IV. EXPERIMENTS

In the experimental evaluation, we will demonstrate that our

approach has the highest success rate and lowest collision

rate while still keeping similar navigation time in comparison

to state-of-art methods [1], [2].



Fig. 4: Quantitative evaluation on scenarios with a various number of humans. Among the three methods, our ESA always has the highest
success rate and lowest collision rate. In comparison to the other two, LSTM-RL [2] has the highest timeout rate and more collisions than
our ESA. SARL [1] never reaches timeouts, however, the collision rate increases dramatically with an increasing number of humans.

A. Environment Setup

We adapt our simulation environments from the work by

Chen et al. [1]. Holonomic kinematics is used for all the

agents. All agents except the robot behave according to

ORCA policy [7]. Invisible setting is kept for the robot in all

experiments to avoid the humans reacting to the robot too

much so that the robot only learns an aggressive policy that

moves straight to the goal. We use circle crossing scenarios

with radius 5 m for training and testing, and all humans

will move to the opposite perturbed positions on the circle.

To realistically simulate real-world conditions, we limit the

sensor range of the robot to 2.5 m, i.e., the robot can only

observe the humans within this radius, rather than observing

all humans in the environment all the time.

B. Training and Testing

We use PyTorch [25] and PFRL [17] to implement the

neural network, 32 as the batch size, and Adam [26] as

the optimizer. For fair comparison, we set the same reward

function, training batch size, optimizer, learning rate for all

methods. In contrast to Chen et al. [1], we abandon imitation

learning since ORCA [7] performs poorly in such a partially

observable environments and cannot be a qualified expert for

demonstration. Note that We were able to reduce the training

time from around 10 hours to around 2 hours on Mac Mini

with M1 chip compared to Chen et al. [1].

We trained all three approaches with 10,000 episodes in

the environment containing 5 dynamic humans and 2 static

humans and learn on each step. For testing, we set up

scenarios containing different numbers of dynamic humans

and static humans. We set 60 sec as the timeout limit for

training so that the agent can get enough exploration, but

set the limit to 24 sec for testing. We set different random

seeds for various episodes. Consequently, in a specific test

episode, the scenarios for all approaches have the same robot

start position, end position, maximum velocity, and humans’

start and end positions. However, the humans’ start and end

positions differ in the episodes by re-randomization.

C. Comparative Evaluation

Baselines. We compare the performances between our work

and LSTM-RL [2] and SARL [1].

(a) (b)

Fig. 5: Average navigation time for the episodes where all methods
succeed in scenarios with different numbers of humans. Fig. (a)
depicts the time on scenarios with different numbers of dynamic
humans, while Fig. (b) is based on the scenarios with 5 dynamic
humans plus different numbers of static humans as indicated.
LSTM-RL [2] always takes the longest navigation time showing
that it behaves rather conservative, while our ESA is only around
1 sec slower than SARL [1].

Quantitative Evaluation. We performed a comparative eval-

uation based on success rate, collision rate, timeout rate,

average navigation time of episodes that were successfully

solved by all three approaches, and average reward among

all tested episodes. Fig. 4 and Fig. 5 depict the results

of the three methods in scenes with different numbers of

dynamic and static humans. Compared with the other two

methods, SARL [1] behaves more aggressively and takes the

shortest navigation time. However, it is more likely to collide

with humans, and the collision rate grows dramatically with

an increasing number of obstacles, while LSTM-RL [2]

behaves quite conservative, resulting in many timeouts and

taking the longest time even in the successful episodes. In

contrast, our approach shows the power of obstacle avoidance

with the increasing number of humans while keeping a

similar navigation time as SARL [1]. The collision rate and

navigation time of our method increase much slower, in

both scenarios, in the pure dynamic environment and the

environment containing both dynamic and static humans. We

also collected the average time on each inference, SARL [1]

takes steady time on different numbers of humans, while

LSTM-RL [2] and our approach slightly increase with the

growing number. Although our inference time is slightly

increased, the maximum difference is only 0.0003 ms.

In addition, Tab. I and Tab. II show the average episode

rewards on the different test scenarios. As can be seen,



(a) LSTM-RL [2] (b) ESA (ours) (c) SARL [1] (d) ESA (ours)

Fig. 6: Illustration of the resulting trajectories. Fig. (a) and (b) show the navigation behavior over time in the scenario with five dynamic
humans. We omit the result of SARL [1] since it performs similarly with our method. Fig. (c) and (d) show how the robot navigates in
the environment with 15 dynamic humans. Here, the result of LSTM-RL [2] is omitted since it behaves as in Fig. (a) but collides with
humans because it basically waits there.

our method outperforms the other two especially with an

increasing number of humans. According to a paired t-tests,

the difference on success rate, collision rate, and average

rewards are statistically significant. This again shows our

method is more robust than others as the collision rate is

the most important metric in crowd navigation.

Number of dynamic humans
5 10 15 20

SARL [1] 0.949 0.795 0.425 0.1
LSTM-RL [2] 0.891 0.737 0.438 0.204
ESA (Ours) 0.972 0.909 0.8 0.531

TABLE I: Average rewards on 1,000 test episodes in the scenarios
containing the different numbers of dynamic humans and no static
humans. Our ESA always gets the highest mean rewards in all
different test scenarios. SARLc̃itesarl performs better than LSTM-
RL [2] on the first two scenarios but worse in the scenarios
containing 15 and 20 humans, which is due to the much higher
collision rate.

5 dynamic + additional number of static humans
1 2 3 4 5

SARL [1] 0.953 0.944 0.902 0.876 0.77
LSTM-RL [2] 0.93 0.889 0.828 0.781 0.696
ESA (Ours) 0.981 0.956 0.945 0.912 0.837

TABLE II: Average rewards on 1,000 test episodes in the scenarios
containing 5 dynamic humans plus the different indicated numbers
of static humans. Again, our ESA outperforms the other two.

Qualitative Evaluation. We further investigated the im-

proved performance of our model by qualitative results.

All three RL-based methods can successfully navigate to

the goal in scenarios containing just a few humans. Still,

LSTM-RL [2] tends to keep conservative and waits for hu-

mans move away. Fig. 6 shows two representative scenarios

of obstacle avoidance when navigating in human crowds.

With five dynamic people in the environment, the robot

controlled by LSTM-RL [2] moves at first, but later it slows

down dramatically and moves from right to left and then

left to right from 5.0s to 16.0s. In contrast, our ESA-driven

robot hesitates at first but then recognizes a better path to

the goal through the center, resulting in a shorter navigation

time. When the number of dynamic humans increases to 15,

SARL [1] is more likely to move into crowds directly,

resulting in collisions, while our ESA slows down first and

then chooses a short path towards the goal.

D. Ablation Study

To evaluate which part contributes more to the final perfor-

mance, we separate the spatial and attention branches into

two parts, and train and test with the same conditions as

before. The ablation study in Fig. 7 shows our ESA combines

both the advantages of both and results in a best performance.

Fig. 7: Average rewards on 1,000 test episodes with different
numbers of humans. We can clearly see that the attention graph
performs better than the spatial graph when there are just a few
people, but the performance drops dramatically with the growing
people number. By combining both graphs for reasoning, our model
acts best in almost all the test scenarios.

V. CONCLUSIONS

In this work, we propose a novel network called Enhanced

Spatial and Attention Graph (ESA) that incorporates both,

spatial and attention reasoning on robot-human relations to

tackle robot navigation in crowded, only partially observ-

able environments. We present a new deep reinforcement

learning architecture and train our network with parallel

Double DQN [16]. The experiments show that our approach

significantly outperforms state-of-the-art baselines [1], [2] in

challenging simulation environments with different numbers

of dynamic and static humans. Even in scenarios with a high

number of humans, our system still keeps a low collision rate.



REFERENCES

[1] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6015–6022.

[2] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 3052–3059.

[3] R. Möller, A. Furnari, S. Battiato, A. Härmä, and G. M. Farinella, “A
survey on human-aware robot navigation,” Robotics and Autonomous
Systems, vol. 145, p. 103837, 2021.

[4] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 285–292.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 1343–1350.

[6] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935.

[7] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, C. Pradalier, R. Sieg-
wart, and G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 3–19.

[8] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935.

[9] D. Helbing and P. Molnár, “Social force model for pedestrian
dynamics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.51.4282

[10] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2010, pp. 797–803.

[11] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and
J. P. How, “Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns,” Autonomous
Robots, vol. 35, no. 1, pp. 51–76, Jul 2013. [Online]. Available:
https://doi.org/10.1007/s10514-013-9334-3

[12] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11,
pp. 1289–1307, 2016. [Online]. Available: https://doi.org/10.1177/
0278364915619772

[13] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: science and systems, 2012.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling
attention in human crowds,” in 2018 IEEE international Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 4601–4607.

[16] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[17] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa, “Chainerrl: A
deep reinforcement learning library,” Journal of Machine Learning
Research, vol. 22, no. 77, pp. 1–14, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-376.html

[18] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
10 007–10 013.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[21] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of monte carlo
methods. John Wiley & Sons, 2013, vol. 706.

[22] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE international
symposium on circuits and systems. IEEE, 2010, pp. 253–256.

[23] L. Noriega, “Multilayer perceptron tutorial,” School of Computing.
Staffordshire University, 2005.

[24] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.


