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Accurate and reliable localization is a prerequisite for autonomously performing high-
level tasks with humanoid robots. In this article, we present a probabilistic localization

method for humanoid robots navigating in arbitrary complex indoor environments using

only onboard sensing, which is a challenging task. Inaccurate motion execution of biped
robots leads to an uncertain estimate of odometry, and their limited payload constrains

perception to observations from lightweight and typically noisy sensors. Additionally,

humanoids do not walk on flat ground only and perform a swaying motion while walking,
which requires estimating a full 6D torso pose. We apply Monte Carlo localization to

globally determine and track a humanoid’s 6D pose in a given 3D world model, which
may contain multiple levels and staircases. We present an observation model to integrate

range measurements from a laser scanner or a depth camera as well as attitude data and

information from the joint encoders. To increase the localization accuracy, e.g., while
climbing stairs, we propose a further observation model and additionally use monocular

vision data in an improved proposal distribution. We demonstrate the effectiveness of our
methods in extensive real-world experiments with a Nao humanoid. As the experiments
illustrate, the robot is able to globally localize itself and accurately track its 6D pose

while walking and climbing stairs.
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1. Introduction

The capability to robustly navigate in complex indoor environments, possibly con-

sisting of different levels connected by steps and staircases, is a prerequisite for

humanoid robots to fulfill high-level tasks such as delivery, home-care, or even dis-

aster relief as motivated in the current DARPA robotics challenge.

One main problem of biped robots is the inaccurate execution of motions due to

their kinematic structure and joint backlash. While walking, this typically leads to
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Fig. 1. Nao humanoid with a laser range finder navigating in a complex environment containing
multiple levels, a staircase, and a ramp (Environment I). Using our localization approach, the

robot is able to accurately estimate its 6D pose while walking and climbing stairs.

foot slippage and consequently to only noisy and inaccurate odometry estimation.

A second challenge is the limited payload of humanoid robots. Lightweight sensors

that are typically noisy have to be used for perception and robust techniques for

localizing a humanoid robot under these constraints are needed.

Humanoids usually cannot be assumed to move on a plane to which their sen-

sors are parallel due to their swaying walking motion. Additionally, their capability

to step over or onto objects needs to be taken into account when planning in en-

vironments containing staircases or obstacles on the floor. Thus, a 2D grid map

representation is not sufficient for navigation with humanoid robots. Accordingly,

2.5D models that also represent the height of objects are often used in the hu-

manoid robotics community.1,2,3 However, for arbitrary environments containing

several levels (e.g., as shown in Fig. 1), a full 3D representation is needed to store

free and occupied areas in a volumetric way.4 For reliably performing navigation

tasks, a robot must be able to globally determine its pose in such a model and accu-

rately track it over time. When operating in non-planar, multi-level environments, a

robot hence needs to estimate a 6D state that contains the height above the ground

as well as the roll and pitch angles in addition to the 2D position and yaw angle.

We apply Monte Carlo localization (MCL) to estimate the robot’s 6D torso pose

in a 3D environment representation using range data, e.g., from a laser or depth

camera. Furthermore, our system integrates data provided by an attitude sensor

and information from the joint encoders of the robot. To increase the localization

accuracy in critical situations, e.g., when climbing stairs, we additionally use data

from a monocular camera in an improved proposal distribution within the particle

filter. As we show in extensive real-world experiments with a Nao humanoid, our
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approach enables the robot to determine its global 6D pose and accurately track it

while walking and climbing stairs. As a further contribution, our implementation is

available open source as a ROS package.a

This work presents a unified approach of our previous localization frame-

works 5,6,7 with a thorough evaluation of different sensors and observation models,

and provides a method for odometry calibration.

The remainder of this article is structured as follows. We first discuss related

work in the next section. Sec. 3 describes our range data based 6D localization

technique including the odometry calibration. In Sec. 4, we present an observation

model for vision data and our technique to combine it with range data by means of

an improved proposal distribution within the particle filter. Finally, the experiments

presented in Sec. 5 demonstrate the robustness and accuracy of our localization

approach in a number of experiments.

2. Related Work

In the last few years, many approaches for tracking the pose of humanoids in the

two-dimensional space have been presented. For example, Ido et al. 8 apply a vision-

based approach and compare the current image to previously recorded reference

images in order to estimate the location of the robot. Oßwald et al. 9 and Ben-

newitz et al. 10 compare visual features to a previously learned 2D feature map

during pose tracking. Pretto et al. 11 track visual features over time for estimating

the robot’s odometry. Cupec et al. 12 detect objects with given shapes and colors in

the local environment of the humanoid and determine its pose relative to these ob-

jects. Seara and Schmidt 13 use stereo vision and known landmarks for estimating

the humanoid’s foot positions in the 2D plane with a Kalman filter while walk-

ing. By actively controlling the gaze, the authors reduce the error of the estimated

poses. Furthermore, techniques using laser range data have also been developed.

Stachniss et al. 14 presented an approach to learn accurate 2D grid maps of large

environments with a humanoid equipped with a Hokuyo laser scanner. Such a map

was subsequently used by Faber et al. 15 for humanoid localization in 2D. Similarly,

Tellez et al. 16 developed a navigation system for such a 2D environment repre-

sentation. Their SLAM approach builds 2D maps from odometry and laser range

finders located in the humanoid’s feet.

Since a 2D map is often not sufficient for humanoid navigation, several methods

use 2.5D grid maps that additionally store a height value for each cell. Thompson et

al. 1 track the 6D pose of a humanoid equipped with a Hokuyo URG-04LX laser

scanner in such a representation. However, they assume that the robot is only

walking on flat ground, constraining height, roll, and pitch within fixed thresholds.

In further approaches, authors use only odometry data to estimate the robot’s

pose. E.g., Chestnutt et al. 2 and Nishiwaki et al. 17 construct a local 2.5D height

ahttp://www.ros.org/wiki/humanoid_localization
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map from a tilting laser range finder located in a humanoid’s hip based on the

estimated motion. Gutmann et al. 18 build a local height map for obstacle avoidance

from stereo data. To avoid problems resulting from the accumulated error due to

odometry drift, old data is discarded after a short period of time in these approaches.

In recent work, Ahn et al. 19 propose to fuse kinematic and visual odometry with

IMU data in order to estimate the pose of a humanoid walking with a heel-toe

motion. While this improves the odometry estimate, it is still subject to drift over

time. With such local tracking based on odometry, it is also not possible to globally

determine the robot’s initial position in a given map.

Michel et al. 3 localize a humanoid with respect to a close object. The authors

apply a model-based approach to track the 6D pose of a manually initialized object

relative to the camera. Stasse et al. 20 and Alcantarilla et al. 21 proposed an approach

to simultaneously localizing the robot and mapping the environment. The authors

combine vision and motion information to estimate the pose and velocities of the

camera as well as visual feature positions in 3D while the robot is walking on a

small circle. Similarly, Kwak et al. 22 discussed grid-based particle filter SLAM for

the humanoid HRP-2. In their approach, they build a grid map of 10 cm resolution

with point clouds from the robot’s stereo vision cameras.

Finally, there exist navigation systems for humanoid robots which use external

sensors to track the robot’s pose, e.g., as used by Michel et al. 23, Stilman et al. 24,

or Chestnutt et al. 2 However, external sensing is usually not practical to employ

outside a lab setting.

In contrast to all of these approaches, we present a system which is able to

accurately determine the complete 6D pose of a humanoid robot in a 3D represen-

tation of a complex, multi-level environment using only on-board sensors. The use of

range sensors leads to a high accuracy of the estimated pose. We hereby extend our

previous work on localization 5,6,7 with a unified approach for range measurements

and vision data, compare different sensors and observation models, and improve the

performance by means of odometry calibration.

3. 6D Localization for Humanoid Robots

Our approach estimates the six-dimensional pose x = (x, y, z, ϕ, θ, ψ) of the robot,

i.e., it maintains a belief about the 3D position (x, y, z) and the roll, pitch, and yaw

angles (ϕ, θ, ψ) of the robot’s body reference frame in the global 3D map of the

environment. This reference frame is located in the center of the humanoid’s torso,

which is also the origin of all of its kinematic chains. For estimating the robot’s

6D state, we apply Monte Carlo localization 25, which we briefly recapitulate in the

following.
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3.1. Monte Carlo Localization (MCL)

MCL is a Bayes filtering technique that recursively estimates the posterior about

the robot’s pose xt at time t:

p(xt | m,o1:t,u1:t) = η ·
observation model︷ ︸︸ ︷
p(ot | m,xt) ·∫

xt−1

p(xt | xt−1,ut)︸ ︷︷ ︸
motion model

· p(xt−1 | o1:t−1,u1:t−1)︸ ︷︷ ︸
recursive term

dxt−1
(1)

Here, η is a normalization constant resulting from Bayes’ rule, u1:t denotes the se-

quence of all odometry readings up to time t, o1:t is the sequence of all observations,

and m the environment model or map. The term p(xt | xt−1,ut) is called motion

model and denotes the probability that the robot ends up in state xt given it ex-

ecuted the motion ut in state xt−1. The observation or sensor model p(ot | m,xt)
denotes the likelihood of obtaining observation ot given the robot is at pose xt in

the map m.

In MCL, the belief distribution over the robot’s current state is approximated

by a set of n weighted samples or pose hypotheses {〈x(1)
t , w

(1)
t 〉, . . . , 〈x

(n)
t , w

(n)
t 〉}.

Here, each x
(i)
t is one pose hypothesis and w

(i)
t is the corresponding weight. The

weight of a particle is proportional to the likelihood that the robot is in that state.

The update of the belief, also called particle filtering, consists of the following steps:

(1) Prediction: The current set of particles is propagated according to the motion

model p(xt | xt−1,ut).
(2) Correction: The importance weight of each particle is computed according to

the observation model p(ot | m,xt) given the map.

(3) Resampling: New particles at time t+1 are drawn with replacement from the

distribution proportional to the particle weights w
(i)
t . Afterwards, their weights

are reset to w
(i)
t+1 = 1

n . This step ensures that the filter converges to pose

hypotheses with high likelihoods.

The filter is either initialized with a distribution of equally weighted samples

around an initial pose estimate for tracking, or with a uniform distribution over all

possible hypotheses for global localization.

3.2. Motion Model

In the prediction step of MCL, a new pose is drawn for each particle according

to the motion model p(xt | xt−1,ut). In the approach presented in this article, ut
corresponds to the incremental motion of the humanoid’s torso in a local coordinate

frame during navigation. In general, the humanoid’s estimated odometry pose as

6D rigid body transform at time t can then be computed as a concatenation of the

incremental motions

x̃t = x̃t−1 ⊗ T (ut) (2)
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in an arbitrary odometry coordinate frame. T (ut) denotes the 6D rigid body trans-

form of the incremental motion ut. ut is computed with forward kinematics from

the current stance foot while walking. This kinematic odometry leads to an accu-

rate 6D pose of the humanoid under ideal conditions. However, the feet of the robot

typically slip on the ground due to inaccurate execution of motions. Additionally,

gear backlash in individual joints can aggravate the problem. Hence, in practice,

only noisy estimates of the odometry are available. Consequently, a particle filter

has to account for that noise with a higher variance, requiring a higher number of

particles and thus more computational power for successful pose estimation.

An alternative source of odometry could be provided by visual odometry. 11,19

By using visual cues from a monocular camera to estimate the relative pose changes,

the estimated motions are less affected by drift. However, visual odometry requires

additional computational power to detect and match features.

3.2.1. Motion Model Calibration

By learning or calibrating the parameters of the particle filter motion model, the

localization performance can be increased in terms of both computational efficiency

and accuracy. Here, we consider the most general case of any kind of 3D positional

and rotational displacement (omnidirectional walking motion). For calibration, we

assume that systematic drift affects the motion reported by odometry in the 2D

plane, i.e., only (x̃, ỹ, ψ̃) are affected from x̃ = (x̃, ỹ, z̃, ϕ̃, θ̃, ψ̃). This is not a strong

restriction as long as the humanoid walks on a solid surface, since its motion is

constrained by this surface and it cannot leave the ground. Even when climbing

challenging terrain such as stairs, the drift of the motion occurs in the 2D plane

of the stance foot as long as the robot does not fall or slide down a slope. General

noise in the kinematic estimate of the humanoid’s height above the ground does not

lead to a systematic drift. For odometry calibration, we will refer to the reduced

state vectors x′ = (x, y, ψ)> containing the 2D position and orientation.

Corresponding to Eq. (2), u′t = (ux,t, uy,t, uψ,t)
> estimates the displacement

between two poses reported by odometry

x̃′t = x̃′t−1 + u′t . (3)

To calibrate the drift of u′t, we require a ground truth pose x′ available in a

prior learning phase, e.g., from a motion capture system, scan matching, or visual

odometry. Based on the deviations from ground truth, values of a calibration matrix

M ∈ R3×3 can be determined to correct the 2D drift of odometry, such that

x′t = x′t−1 + M u′t . (4)

We describe how such a calibration matrix can be learned in the next section.

To account for general motion noise, the particle prediction step adds multivari-

ate Gaussian noise to u′t for each particle i, whereas the systematic drift is accounted

for by the mean of the Gaussian distribution N . As Eliazar and Parr 26, we assume
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independent noise sources for the drift in forwards and sideways direction, as well as

orientation. This results in a noise model in which the mean depends linearly on u′t
and the variance quadratically. Thus, the prediction step samples for particle i a

new pose according to:

x
′(i)
t = x

′(i)
t−1 +N (M u′t,Σ u′2t ) . (5)

Here, Σ is a matrix containing vectors of noise parameters and u′2t =

(u2x,t, u
2
y,t, u

2
ψ,t)
>. The first element of x

′(i)
t , for example, results in

x
(i)
t = x

(i)
t−1 +N (Mxxux,t +Mxy uy,t +Mxψ uψ,t,

σ2
xxu

2
x,t + σ2

xyu
2
y,t + σ2

xψu
2
ψ,t) .

(6)

By filling the remaining values for z, roll, and pitch we obtain the final mo-

tion model p(xt | xt−1,ut) in 3D. Since these dimensions are constrained by the

ground plane when walking, we assume zero-mean noise variances that depend on

the traveled distance since the last odometry reading.

3.2.2. Learning the Motion Model Parameters

In this section, we introduce our approach to learn the motion model parameters

so that the Gaussian distribution in Eq. (5) represents the actual drift and noise by

the walking humanoid.

Let U ∈ RN×3, Ui = (ux,i, uy,i, uψ,i) contain the incremental odometry motion

estimates for each of theN timesteps acquired while recording the ground truth data

for calibration, e.g., with an external tracking system. Following the idea of least-

squares odometry estimation by Eliazar and Parr 26, Mx = (Mxx,Mxy,Mxψ)>

is the column vector containing the elements of the mean calibration matrix M

that influence x, and Xx ∈ RN×1 contains the ground truth measurements of the

incremental displacements in x direction. We can now solve the overdetermined

system

UMx = Xx (7)

for Mx with least squares to determine the first row of M. The remaining rows My

and Mψ can be solved analogously.

To estimate the variance parameters Σ, we define U2 ∈ RN×3 as a vector of

squared odometry motions U2
i = (u2x,i, u

2
y,i, u

2
ψ,i), Σx = (Σxx,Σxy,Σxψ)> as the col-

umn vector of variances in x, and Xx2 ∈ RN×1 as the measurements on the variances

such that Xx2,i = (UiMx −Xx,i)
2. We can now solve the linear equation

U2Σx = Xx2 , (8)

and the corresponding ones for Σy and Σψ.

Fig. 2 shows the difference between a calibrated and an uncalibrated motion

model for a humanoid walking straight and on an arc. The calibrated motion model

properly captures the drift since the particle distribution is close to the ground
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Reported odometry Ground truth

Uncalibrated, straight

10 cm

Calibrated, straight

10 cm

Uncalibrated, arc

10 cm

Calibrated, arc

10 cm

Fig. 2. Comparison between an uncalibrated odometry motion model (left) and a calibrated one

(right) for walking straight and on an arc with a Nao humanoid. The uncalibrated motion model
requires a larger variance for the particles to account for the systematic drift. 2000 particles were

used in each iteration for this visualization.

truth. Compared to that, the uncalibrated motion model requires larger variances,

and thus more particles, to account for systematic drift.

3.3. Observation Model

The belief about the humanoid’s 6D state is updated based on three different sources

of sensor information contained in one observation ot. First, range measurements rt
provided by a laser range finder or depth camera are integrated. Second, we regard

the height z̃t of the humanoid’s torso above the current ground plane as a mea-

surement of its joint encoders and also integrate the angles for roll ϕ̃t and pitch θ̃t
as estimated by the noisy IMU. Since all these measurements are independent, the

observation model decomposes to the product

p(ot | m,xt) = p(rt, z̃t, ϕ̃t, θ̃t | m,xt) (9)

= p(rt | m,xt) · p(z̃t | m,xt) · p(ϕ̃t | xt) · p(θ̃t | xt).

3.3.1. 3D Environment Representation

For humanoid navigation in non-planar, possibly multi-level environments, a full

3D occupancy grid map is necessary since the map needs to encode both occupied

and free volumes for arbitrary structures. In our system, we employ OctoMap, an

efficient implementation of 3D occupancy grids based on octrees.4 This enables our

system to use map resolutions as small as 1 cm for a complete 3D indoor map. In

this work, we assume a volumetric 3D representation of the environment as given
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and leave map building and SLAM for future research.

3.3.2. Range Measurements

To integrate range measurements, usually the endpoint model (also called likelihood

field) or raycasting (also called beam model) are used for K beams rt,k of a range

measurement rt that consists of a complete scan from a laser or a depth image from

a camera.

In the endpoint model 27, the likelihood of a single range measurement rt,k
depends on the distance D(rt,k) of the corresponding hypothetical beam endpoint

to the closest obstacle represented in the map, i.e.,

p(rt,k | m,xt) = φ(D(rt,k), σr) , (10)

with the Gaussian distribution

φ(d, σ) =
1

σ
√

2π
exp

(
− d2

2σ2

)
. (11)

Here, σr is the standard deviation of the sensor noise. For a given 3D map, the dis-

tancesD can be pre-computed for all 3D cells with a Euclidean distance transform.28

Since the lookup can then be implemented as a single query, the endpoint model

is a popular and efficient choice for laser-based localization.29 However, it neglects

the beam characteristics of range sensors, which cannot pass obstacles between the

sensor origin and its endpoint. This potentially leads to a less accurate localization

especially in three-dimensional environment structures.

In the ray casting model, a ray is cast from the origin of the sensor in the

current beam direction until it hits an obstacle. This returned distance d̃(rt,k) is

then compared with the actually measured beam distance d(rt,k):

p(rt,k | m,xt) = φ
(
d̃(rt,k)− d(rt,k), σr

)
. (12)

While the ray casting operation is computationally demanding particularly in

3D, it is better informed of three-dimensional structures, which can result in an

improved localization accuracy. In Sec. 5, we will compare the performance of ray-

casting with the endpoint model. For efficiency, we rely on a parallelized raycasting

implementation in our 3D mapping framework OctoMap.4

As presented by Thrun et al. 30, we extend the single probabilities p(rt,k) to a full

probabilistic model including terms for maximum range measurements to account

for sensor errors and random measurements to account for unmodeled objects in

the sensor beam.

The integration of a full scan rt is then computed as the product of the beam

likelihoods

p(rt | m,xt) =

K∏
k=1

p(rt,k | m,xt) (13)
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Angular subsampling

1 m

sensor

Cartesian space subsampling

sensor

Fig. 3. Comparison of different techniques for selecting a subset of endpoints (black dots) from

a 2D laser scan (light red dots): Angular subsampling takes every n-th point (left), whereas our
method subsamples the end points based on their distance in Cartesian space (right). Highlighted

by dashed ellipses are potential problems in angular subsampling: Close obstacles receive a higher

weighting by more endpoints and thin obstacles can be missed.

with the common assumption of conditional independence between the beams. In

practice, the independence can be assured by using only a subset of all the avail-

able range measurements. A common practice is to use every n-th beam, e.g. at

intervals of 5◦. While this angular subsampling is straightforward to implement, it

exhibits a number of problems, as highlighted in Fig. 3. First, endpoints on close

obstacles are spaced close to each other while obstacles further away only have few

points on them. This results in an overconfidence on close-range readings, since they

are no longer conditionally independent. Second, thin obstacles that are observed

only with few endpoints but could provide unique features for localization can be

missed. To overcome these problems, we implement a subsampling of the endpoints

in the Cartesian space. All points falling into one cell of an equally-spaced grid

are approximated by their centroid. As can be seen in Fig. 3 (right), our Cartesian

space subsampling strategy results in regularly-spaced endpoints that represent the

actual scan much closer with the same number of points. The same technique can

be applied to 3D point clouds, e.g., from depth or stereo cameras.

3.3.3. Roll, Pitch, and Height Measurements

Furthermore, we need to integrate the torso height z̃t above the ground plane as

computed from the values of the joint encoders and the roll ϕ̃t and pitch θ̃t pro-

vided by the IMU. Here, we evaluate the difference between the quantities predicted

according to the motion model and their measured values. Similar to the endpoint

model for range measurements, their likelihoods are computed according to the

distance function in Eq. (11):

p(z̃t | m,xt) = φ(zt,ground − z̃t, σz) (14)

p(ϕ̃t | xt) = φ(ϕt − ϕ̃t, σϕ) (15)

p(θ̃t | xt) = φ(θt − θ̃t, σθ) , (16)
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where σz, σφ, and σθ are given by the noise characteristics of the joint encoders and

the IMU, and zt,ground is computed from the height difference between zt and the

closest ground level in the map.

Finally, the complete measurement update step of the localization can be com-

bined to the product of Eq. (13)-(16) according to Eq. (9) by choosing appropriate

weighting factors for the individual likelihoods.

3.4. Global Localization and Relocalization in Multi-level

Environments

When the robot has no initial guess about its pose, it needs to estimate the pose

globally. In MCL, this is done by initially distributing the pose hypotheses over

possible robot poses in the whole environment, in our case also over all levels. To

efficiently draw robot pose hypotheses, we sample x, y, and ψ uniformly within free

areas of the map and z from the probability distribution given by Eq. (14). For each

sampled 2D position (x, y), we hereby consider the initial height measurement z̃0
at all represented ground levels. Similarly, roll and pitch are sampled according to

Eq. (15) and (16) for an initial IMU measurement (ϕ̃0, θ̃0).

Obviously, global localization requires more particles than pose tracking. How-

ever, once the initial particle cloud has converged, the robot’s pose can be tracked

using fewer particles. Convergence of the particle cloud can be detected by the

spread of the particle poses.

Overconfidence in the robot’s pose could cause the localization estimate to lose

track of the actual robot pose. This problem, and the related kidnapped robot prob-

lem, can be solved by globally injecting random particles. 30

4. Improved Proposals for Highly Accurate Pose Tracking

During challenging whole-body motions such as stair climbing, odometry informa-

tion may become highly unreliable and noisy, leading to a flat proposal distribution

of the motion model. In contrast, the observation likelihood is peaked so only a

small number of particles have high weights and cover the meaningful areas of the

target distribution. Hence, a large number of particles is required to sufficiently

represent the posterior distribution. In order to achieve more focused particle sets,

which require fewer particles to represent the posterior, we therefore use an im-

proved proposal that takes into account the latest range observations that we fuse

with vision observations.7

4.1. Observation Model for Vision Data

While our range-based localization is highly accurate when walking on the ground,

translational errors can be larger while climbing demanding terrain such as stair-

cases due to inaccurate motion execution and slippage on the steps. The placement

of a laser range finder may inhibit directly observing the area in front of the feet,
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which may be crucial for accurate positioning. Similarly, stereo and RGBD-sensors

have a dead spot at close ranges due to their cameras’ baseline or properties of

the active illumination projector. We therefore propose to augment the observation

model in the particle filter with vision data in the form of detected edges, which are

typically present in all kinds of complex environments and can be reliably detected

in monocular images.

The new observation model for vision data p(Ct | m,xt) defines the likelihood

of capturing the scene in a set of images Ct = {ct,1, ct,2, . . . } given a 3D edge model

of the environment m and the estimated pose xt of the robot. We assume that the

individual image observations are conditionally independent:

p(Ct | m,xt) =
∏
ct∈Ct

p(ct | m,xt) , (17)

which is a reasonable assumption when there is only little or no overlap between

them.

Our approach for estimating the observation likelihood is based on chamfer

matching and relies on a consistent matching of the given edge model of the staircase

to lines detected in the camera images.7 The edge model can be specified by the user,

computed from the volumetric 3D map, or learned from 3D range observations.31

First, the algorithm applies the Canny edge detection algorithm and a proba-

bilistic Hough transform in order to extract line segments. Afterwards, a distance

transformation is applied to the detected lines so that the value of each pixel in-

dicates the Euclidean distance between the pixel and the nearest detected line.

Similarly, we compute an orientation transformation that maps each pixel to the

orientation of the nearest detected line.

To determine the observation likelihood for a given estimate of the robot’s pose,

the algorithm projects the edges of the given staircase model from the camera pose

onto the image. By iterating over all visible pixels q = (u, v) of the model edges l

projected onto the camera image, the algorithm computes the cost function

cost =
∑
l∈m

∑
q∈l

(
α · dist(q,d(q)) + β · ∠(d(q), l)

)
. (18)

Here, d(q) denotes the detected line nearest to pixel q, dist(q,d(q)) denotes the

Euclidean distance between the pixel q and the nearest detected line, ∠(d(q), l) is

the absolute angle between the nearest detected line and the projected model line,

and α, β are constant weighting factors.

Since the costs in Eq. (18) are within the semi-infinite interval [0,∞), we apply

the exponential distribution for the observation likelihood

p(ct | m,xt) = λ exp(−λ · cost), (19)

where the distribution parameter λ was determined experimentally.
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4.2. Improved Proposal Distribution

According to Doucet et al. 32, the following distribution is the optimal proposal in

terms of minimizing the variance of the importance weights:

p(xt | m,x(i)
t−1,ot,ut−1) =

p(ot|m,xt)·p(xt|x(i)
t−1,ut−1)

p(ot|m,x(i)
t−1,ut−1)︸ ︷︷ ︸

=:η(i)

(20)

However, computing this proposal analytically requires to evaluate the integral

η(i) =

∫
p(ot | m,xt) · p(xt | x(i)

t−1,ut−1) dxt, (21)

for which there is no closed-form solution in the general case.

Following the approach proposed by Grisetti et al. 33, we approximate the inte-

gral as a finite sum

η(i) '
K∑
j=1

p(ot | m,x(i)
j ) · p(x(i)

j | x
(i)
t−1,ut−1), (22)

where {x(i)
1 , . . . ,x

(i)
K } is a set of sample points drawn around the particle’s pose.

This sampling technique can be used to efficiently approximate the proposal if the

sampled points cover meaningful regions of the proposal and these regions are suf-

ficiently small. The proposal distribution typically only has one mode, which we

determine by scan matching the point cloud of the range sensor in the 3D environ-

ment model. As the most likely pose returned by the scan matcher already provides

a good estimate, we expect that the meaningful regions of the proposal distribution

will be in the vicinity of the mode. We can thus cover the meaningful area of the

proposal distribution by drawing a low number of samples from a uniform distribu-

tion within a fixed radius around the computed mode and finally approximate the

distribution by fitting a Gaussian to the weighted sample points.

4.3. Improved Proposals for Range and Vision Observations

In our case of combining ranges rt and camera images Ct as observation ot, the

proposal distribution is

1

η(i)
· p(rt, Ct | m,xt) · p(xt | x(i)

t−1,ut−1), (23)

and we evaluate it in points sampled in x, y, and ψ direction. According to Eq. (22),

this results in an approximation of η(i):

η(i) := p(rt, Ct | m,x(i)
t−1,ut−1)

'
K∑
j=1

(
p(rt, Ct | m,x(i)

j ) · p(x(i)
j | x

(i)
t−1,ut−1)

)
(24)
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Fig. 4. Experimental Environment II

At each sample point x
(i)
j , the algorithm evaluates the observation likelihood

p(rt, Ct | m,x(i)
j ) based on the current range measurement rt and the set of camera

images Ct. We assume that the range measurement and the measurements from the

individual images are conditionally independent and compute the range measure-

ment observation p(rt | m,x(i)
j ) according to the raycasting model (Sec. 3.3.2) and

the vision observations p(ct | m,x(i)
j ) according to chamfer matching (Sec. 4.1).

Finally, the algorithm draws a new particle pose from a Gaussian fitted to the

weighted samples and computes the corresponding importance weight according to

w
(i)
t ∝ w

(i)
t−1 · η(i) · p(z̃t | m,x

(i)
t ) · p(ϕ̃t | x(i)

t ) · p(θ̃t | x(i)
t ) (25)

with the observation models defined in Eq. (14)–(16).

5. Experiments

In a set of localization experiments, we evaluated various aspects of our localiza-

tion approach with two different Nao humanoids. The experimental environments

are shown in Fig. 1 and Fig. 4. A volumetric 3D map of these environments was

manually constructed.

We used the weighted mean of the particle distribution as estimated localization

pose of the robot. To provide ground truth data, we used a MotionAnalysis Raptor-

E motion capture system in both environments. For the tracking experiments, we

initialized the particle filter pose at the ground truth pose returned by the motion

capture system.

5.1. Humanoid Robot Platform

As a robotic platform in our experiments, we used the Aldebaran Robotics Nao

humanoid, shown in Fig. 5. The robot is 58 cm tall, weighs 4.8 kg and has 25 degrees

of freedom.
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Fig. 5. Nao humanoids used for the evaluation of our work, using a head-mounted 2D laser range

finder (left) and an RGBD-camera (right).

We first performed experiments with a Nao equipped with a laser head, i.e., we

used the range data from a Hokuyo URG-04LX laser range finder. The 2D range

finder provides a field of view of 240◦ with a maximum range of 5.6 m. The second

Nao humanoid is equipped with a consumer-grade Asus Xtion Pro Live RGB-D

camera. The camera has a field of view of 58◦ horizontally and 45◦ vertically. It is

mounted on the robot’s head in such a way that its optical axis faces the floor in

a 30◦ angle while walking. Since the error of this sensor grows quadratically 34, we

limited the maximum range to 5.6 m. We also adjusted σr in the range measure-

ment models of Eq. (10) and Eq. (12) to quadratically depend on the measurement

range r. Finally, to sample rays from the depth camera data, our system separates

all end points of the corresponding point cloud into ground and non-ground parts

by means of a RANSAC-based plane detection. Our approach uses this information

for sampling rays from non-ground points uniformly over the Cartesian space with

a higher density than ground points. Thus, we compensate for the fact that beams

hitting the floor can provide no information for estimating the translation in the

horizontal plane, which is typically more important than height or pitch and roll.

In order to obtain measurements of its joint positions, Nao is equipped with

Hall effect sensors which measure the angle of each joint. Using the joints of the

support leg, an estimate of the robot’s torso position and orientation can be obtained

through forward kinematics at any time. Additionally, an inertial measurement

unit (IMU) yields an estimate about the robot’s orientation. Measurements from a

two-axis gyroscope and a three-axis accelerometer are integrated in order to obtain

an estimate of the robot’s torso orientation around the world x and y-axis (roll

and pitch, respectively). The measurements of this small and lightweight IMU are

quite noisy compared to the IMUs often used in robotics. However, especially while

walking, these values are more accurate than the roll and pitch obtained through

kinematics of the measured support leg joint angles, because the robot’s feet may
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not always precisely rest on the ground.

In all our experiments, Nao was teleoperated with an omnidirectional velocity

input. From that, the default walking engine (API version 1.12) generated the gait

for walking straight, on arcs, sideways, and for turning.

In practice, odometry and other sensor data do not arrive at discrete timesteps

but asynchronously and with different update rates. To solve this problem and

achieve time synchronization, we update the MCL filter based on range sensor data,

interpolating odometry and IMU sensor data between two valid measurements. A

second problem stems from the fact that a range image is not generated instanta-

neously but over a certain amount of time in which the robot may be moving. To this

end, we apply temporal uncertainty sampling as introduced by Thompson et al.1

For each particle, odometry data is interpolated to a timestamp which is sampled

uniformly around the current measurement timestamp in an interval corresponding

to the time needed for a complete scan (0.1 s).

Throughout our experiments, we used a Cartesian sampling distance for beam

endpoints of 30 cm and integrated new observations only after the robot has traveled

a distance of 15 cm or changed its orientation for more than 23◦ since the last sensor

integration.

5.2. Run Time Performance

We first evaluated the run times of the range sensor model. It constitutes the most

computationally expensive part of MCL, but can be efficiently parallelized. We

compared the endpoint model to raycasting in a map of Environment I (Fig. 1)

with 1 cm resolution on a standard desktop CPU (Intel Core i7-2600, 3.4 GHz). The

average number of considered end points here was 60, with an average beam length

of 1.68 m. Through parallelization with four threads, we achieved average run times

as fast as 0.013 ms per particle for the endpoint model, and 0.448 ms per particle

for raycasting (single-threaded: 0.024 ms / 1.172 ms). This results in a maximum

realtime update rate of 11.2 Hz for 200 particles with raycasting and parallelization.

Note that in practice, sensor measurements are only integrated after the robot has

moved for a certain distance to ensure conditional independence between updates.

As the raycasting time directly depends on the map resolution and number of end

points, this can be further optimized depending on the scenario at hand.

5.3. Laser-Based Pose Tracking

With the laser range finder, we evaluated the performance of our localization ap-

proach in Environment I for different sensor and motion models against ground

truth from the motion capture system. Since any Monte Carlo method is suscepti-

ble to the effects of pseudo-random number generators, we evaluated the errors as

mean and 95% confidence interval over ten differently seeded localization runs of

the same recorded sensor data.
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Fig. 6. Left : Trajectory estimated with our localization approach compared to ground truth and
odometry on the lower level of Environment I. 200 particles were used with a laser range finder

using raycasting and a calibrated odometry motion model. The robot started walking forward
at (A), then walked on a right turn at (B) towards (C) where it turned left on the spot and walked

on an arc to (D). From there, it walked sideways to (B) and continued forwards over (A) to (E).

At (E) it turned on the spot, walked forward to (F), turned again, and walked backwards to the
goal at (G). Right : Mean translational and yaw error with 95% confidence interval for N = 10

runs in the same setting.

To calibrate the odometry motion model using the method described in

Sec. 3.2.2, the humanoid executed a set of sample movements such as walking for-

ward, sideways, or turning on the spot before performing the actual experiments.

We then used the data of the incremental odometry motions and the ground truth

from motion capture to obtain the systematic drift and noise parameters of the mo-

tion model. In the uncalibrated model, the drift is accounted for with larger noise

parameters.

The complete trajectory for the evaluation of the localization performance has

a length of approximately 5 m and includes parts of walking forward, on arcs, side-

ways, backwards, and turning on the spot. Fig. 6 shows a single trajectory and the

error over time for 200 particles. The mean translational error for this run was 3.9 cm

and the mean yaw error 1.7◦. Roll and pitch errors are not shown but generally be-

low 3◦. Pose estimation based on odometry quickly diverges while our localization

approach is able to track the ground truth closely through all walking motions.

Fig. 7 shows the aggregated results for different numbers of particles. Note that the

angular errors behave similarly but are not shown for clarity. As can be seen, the

endpoint model, while computationally more efficient, is not able to capture the

full 3D structure of the environment and results in a significantly higher localiza-

tion error (t-test, 99% confidence). A calibrated odometry motion model generally

improves the localization performance when using only few particles. This improve-

ment is statistically significant up to 200 particles (t-test, 95%). Hence, we used

raycasting and the calibrated motion model in the next experiments.

Estimating only x, y, and ψ in a 2D map with raycasting and odometry cali-
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Fig. 7. Mean translational error with 95% confidence interval for laser-based localization on the

lower level of Environment I (N = 10 runs each). Raycasting leads to a significantly lower error.

A calibrated odometry motion model requires less particles to achieve the same performance as
an uncalibrated one.

bration leads to a higher average error of 4.6 cm, whereas our method results in

3.9 cm when using 200 particles. While this difference is not statistically signifi-

cant, the individual deviations can be much higher, potentially leading to collisions

with obstacles when navigating with an inaccurate pose estimate. In all trajectories,

the maximum error was 14.5 cm (translation) / 22◦ (yaw) for 2D localization and

9.5 cm / 9◦ for our 3D localization, both using 200 particles with raycasting and

calibrated odometry. This demonstrates that the humanoid’s swaying motion of up

to 5◦ in each direction needs to be considered and indeed a full 6D pose estimation

results in the highest accuracy.

A video demonstrating our laser-based localization approach is available online

at http://www.youtube.com/watch?v=uiIi2rSKWAU.

5.4. Laser-Based Global Localization

Fig. 8 shows the evolution of the particle distribution for global localization with

50 000 particles. Initially, the complete area of Environment I was covered with pose

hypotheses. After three sensor updates, the particles converged to the ground truth.

Throughout 10 runs in the same setting, our global localization approach always

converged to a pose within 10 cm of the ground truth requiring at most four sensor

updates, which demonstrates the reliability of our approach for global localization.

As discussed in Sec. 3.4, once the particle poses have converged, the localization

changes into a tracking mode and resamples the distribution using fewer particles.

5.5. Comparing Laser-Based With Depth Camera-Based

Localization

In this experiment, we evaluated the localization performance when using an afford-

able consumer-level depth camera instead of the Hokuyo laser range finder. Both
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Fig. 8. Particle distribution over time for global localization with 50 000 particles in Environment I.
The left column shows a projection into the xy-plane, while the right column shows a side view.

Initially (top row), particles were distributed uniformly over all surfaces including the ramp and
staircase. The first sensor update (middle row) resulted in a few clusters, one on the upper level
at z=1 m. After three sensor updates, the particles converged to the ground truth (bottom row).

Nao robots are nearly identical except for the installed range sensors (see Fig. 5).

We calibrated the motion model parameters for both robots as explained in Sec. 5.3.

Both robots were teleoperated to follow the same path of approximately 8 m length

through Environment II (Fig. 4), while they were tracked with the motion capture

system. We compared ten localization runs using 60 beams on average of each sen-

sor for a localization update. As can be seen in Fig. 9, the mean error increases

when using the depth camera due to its narrow horizontal field of view and increas-

ing noise for longer measurements. The difference is statistically significant for 100

particles (t-test, 99%). Maximum errors over all 10 localization runs were 13.4 cm
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(d) Error with depth camera-based localization

Fig. 10. Comparison of the trajectories and error over time for laser-based and depth camera-based

localization with 300 particles in Environment II (N = 10 runs each). The robots started at (A),
walked forward to (B), then on a curve to (C). There, they turned on the spot and continued

forward to the goal (D).
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Fig. 11. Nao humanoid climbing a spiral staircase using our approach of combining vision and
laser range data for localization to correct for motion noise.

(translation) / 7◦ (yaw) when using the laser, and 21.4 cm / 8◦ when using the

depth camera. As visible in the error over time in Fig. 10, the error for depth cam-

era based localization is highest when the robot has only few obstacles to observe

nearby, e.g. between locations (A) and (B) (10 – 30 s) or when approaching (D)

(82 – 100 s). Nevertheless, both sensor configurations are able to accurately track

the humanoid’s motions while odometry quickly diverges.

5.6. Improved Proposals Localization for Climbing Stairs

We then evaluated the performance of our localization approach extended with

vision information for the scenario of climbing stairs. Here, the robot had to climb

the ten steps of the spiral staircase connecting the two levels of Environment I using

the laser sensor and a monocular camera for localization (Fig. 11). In addition to

the volumetric 3D map, the robot here made use of the known edge model of the

staircase.

Based on the localization estimate, the robot aligns with the step in front of it

and then proceeds to climb the step with a learned whole-body motion. Once the

humanoid reaches the top of the step, it integrates a sensor measurement for pose

estimation and then corrects for motion drift by aligning with the next step. For

integrating vision data into our improved proposals approach, the robot assumes an

upright posture and acquires three images with its bottom-facing camera, looking

to the left, center, and right. This combination allows the humanoid to capture

most of the area in front of its feet, despite the narrow field of view of the internal

camera. The robot stands still while capturing an image to avoid motion blur.
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Fig. 12. Camera view of the robot when looking to the left, center, and right. Overlayed in white
is the projected stair model from the best particle pose after integrating all observations. The

matching model demonstrates the high accuracy of the localization.

1 cm 1 cm 1 cm

Fig. 13. Observation likelihood p (ct | m,xj) for left, center, and right camera image in the hori-

zontal plane as returned by chamfer matching. Brighter areas correspond to a higher likelihood.

1 cm 1 cm

Fig. 14. Left : Observation likelihood p (rt | m,xj) of the laser data. Right : Final improved proposal
distribution by combining laser and vision observations (Fig. 13) with the 95% confidence ellipse
of the Gaussian approximation (white). Brighter areas correspond to a higher likelihood.

5.6.1. Measurement Integration for a Single Step

As an illustrating example of integrating vision data according to Sec. 4, Fig. 12

shows the robot’s view of the staircase when standing on the second step and look-

ing to the left, center, and right with its bottom-facing camera. Fig. 13 shows the

resulting observation likelihoods in the horizontal plane for these camera observa-

tions and Fig. 14 (left) shows the likelihood of the corresponding laser observation

with raycasting. The coordinate system is identical for all distributions and is cen-
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tered at the odometry pose. The distributions of the left and right camera image

are both focused and have similar modes while the distribution of the center cam-

era image is spread in horizontal direction due to the higher uncertainty in lateral

direction. The final improved proposal and fitted Gaussian distribution resulting

from combining the distributions for vision and laser is shown in Fig. 14 (right).

As can be seen, the pose estimate is highly focused. Fig. 12 shows the edge model

projected from the best particle’s pose after localizing on this step. The projected

lines on the left and right camera image closely fit the corresponding edges of the

staircase; the errors in lateral direction and in the orientation are only small. The

error in forward direction is slightly higher, which is caused by the strong lines in

the wood texture parallel to the stair edge.

5.6.2. Localization Accuracy

As a performance measure for the quality of the localization, we evaluated the

pose returned by the localization approaches with and without integrating visual

observations and compared it to the ground truth from the motion capture system

on each single step. To this end, we aggregated the results over the number of

successful steps the robot climbed in six runs (N = 23 for laser-only localization,

N = 60 for the laser and vision). Note that our combined approach lead to a success

rate of 100% for climbing all 10 steps of the spiral staircase, whereas laser-based

localization resulted in a fall in five out of six runs.

For the standard laser-based localization, the mean translational error in the

horizontal plane on each successful step was 2.56 cm ± 0.63 cm (95% confidence

interval) and a mean orientation error was 1.3 ◦ ± 0.4 ◦. In comparison to that, our

combined approach using improved proposals with chamfer matching resulted in a

mean error in the orientation of only 0.6 ◦ ± 0.2 ◦. The difference of the angular

error is highly significant (t-test, 99.9%). The improved proposals approach also de-

creased the mean translational error to 1.09 cm ± 0.14 cm, which is also statistically

significant (t-test, 95%). Note that the accuracy is in many cases higher than the

map resolution (1 cm) used for laser-based MCL, which additionally demonstrates

the advantages of integrating visual information.

Our approach is robust against unmodeled objects and texture on the surfaces,

as the vision observation model only tests if the predicted edges are present in the

camera images. The robot can detect self-occlusions and exclude the affected regions

from the observation model. However, the localization performance may degrade if

other unmodeled objects occlude significant parts of the predicted model edges, or

if the texture contains strong lines running parallel to the modeled edges.

Fig. 11 shows the robot climbing the spiral staircase using our approach. A video

of the complete sequence is available online at http://www.youtube.com/watch?

v=U9ll8y3Svkw.
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6. Conclusions

In this article, we presented an approach to probabilistic localization for humanoid

robots in a 3D representation of the environment. Our system is able to deal with

all challenges occurring during humanoid robot navigation. This includes highly

inaccurate odometry information, inherently noisy sensor data, and the violation of

the flat world assumption. We apply Monte Carlo localization to globally determine

and reliably track a humanoid’s 6D pose, consisting of the 3D position and the

three rotation angles. Hereby we integrate range data from a 2D laser or an RGBD-

camera, as well as attitude estimates from an IMU and measurements from the joint

encoders. We extended this approach to additionally integrate vision data. In this

way, the localization performance can be further improved.

We thoroughly evaluated and discussed the presented methods. As we show

in our experiments with a Nao humanoid robot, our method is able to accurately

estimate the 6D pose of the humanoid’s torso while walking and climbing stairs. Our

approach is generally applicable to humanoid robots equipped with range sensors

given a 3D model of the environment.

Our localization system currently relies on the availability of a 3D map to localize

in, which must be acquired by the robot itself or supplied by the user beforehand.

We intend to use a Simultaneous Localization and Mapping (SLAM) approach in

future research in combination with our sensor and motion models.
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