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Abstract— Although the neurological impairments of Parkin-
son’s disease (PD) patients are well known to go along with
motor control deficits, e.g., tremor, rigidity, and reduced move-
ment, not much is known about the motor control parameters
affected by the disease. In this paper, we therefore present a
novel approach to human motions analysis using motor control
strategies with joint weight parameterization. We record the
motions of healthy subjects and PD patients performing a hand
coordination task with the whole-body XSens MVN motion
capture system. For our motion strategy analysis we then follow
a two step approach. First, we perform a complexity reduction
by mapping the recorded human motions to a simplified
kinematic model of the upper body. Second, we reproduce
the recorded motions using a Jacobian weighted damped least
squares controller with adaptive joint weights. We developed a
method to iteratively learn the joint weights of the controller
with the mapped human joint trajectories as reference input.
Finally, we use the learned joint weights for a quantitative
comparison between the motion control strategies of healthy
subjects and PD patients. Other than expected from clinical
experience, we found that the joint weights are almost evenly
distributed along the arm in the PD group. In contrast to that,
the proximal joint weights of the healthy subjects are notably
larger than the distal ones.

I. INTRODUCTION

Within the last decade, recording and analyzing human
motion data has gained an increased interest in a variety of
research fields, ranging from medical science, neuroscience,
computer graphics, to robotic applications. The way the
data is used, however, differs between these fields. The
former fields are mainly interested in understanding human
motion and its underlying principles in order to improve
therapy methods for patients with neurological or physio-
logical diseases, whereas computer graphics and robotics
aims at generating human-like motions for artificial multi-
joint robotic systems to improve the appearance, coexistence,
collaboration, and safety in human-robot interaction scenar-
ios. So far, robotic research has used human motion data
to map hand/end-effector and joint trajectories to robotic
platforms for tele-operation applications or applied the data
as reference input for motion planning algorithms and control
schemes, rather than investigating the underlying motion
control strategy that generated the observed human trajecto-
ries. Altogether, these approaches have in common that they
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Fig. 1. Motion strategy analysis: experimental setup for data collection (top
left), motion representation (bottom left), and motion model used to learn
the motor control parameters (bottom right).

consider the human motion samples as a desirable, natural
human kinesic behavior to be adopted by robotic platforms or
reflected by schemes modelling the human musculoskeletal
system. Contrary, we aim in this work towards analyzing the
distinction between the human motion samples and separate
them into different groups, namely the motion of healthy
subjects and Parkinson’s disease (PD) patients whose motor
control is affected by a neurological disorder. Note that
the end-effector trajectories of different subjects performing
the same task, e.g., moving an object from one location to
another, are typically similar, whereas the joint trajectories
generated by the individual motor control scheme might
differ significantly depending on the constitution of the
subject.

In this paper, we present a novel approach to investigate
the hypothesis that members of the respective group share a
common motor control strategy to select among the infinite
set of joint trajectory solutions achieving a given task. We
focus our analysis on the hand coordination task of pouring
water from one glass into another, as depicted in Fig. 1.
Our approach relies on motion data of healthy and PD
subjects collected using a whole-body motion capture suit.
In a first step, we map the data to a simplified scale-adaptive
artificial model of the human upper body in order to perform
dimensionality reduction. Afterwards, we use this model to
track the mapped human end-effector trajectories based on a
variable damped least squares control scheme with adaptive
joint weights. The joint weight parameterization of the con-
trol scheme allows executing the same end-effector trajectory
with arbitrary joint trajectories that, in turn, reflect different



motor control strategies. To determine the respective motor
control strategy for each subject, we developed a technique
to iteratively learn the joint weights of the controller so as to
match the observed joint trajectories. Based on the resulting
joint weights, we carry out a quantitative comparison of the
differences between the motions of PD patients and healthy
subjects and infer their motion control strategy principles.
According to our results, it turns out that we can differentiate
between two motor control strategies, referred to as the
proximal and distributed motion strategy, adopted by the two
groups for task achievement. To the best of our knowledge,
this is the first approach learning indicative motor control
parameters in order to explain the effects of neurological
diseases onto the musculoskeletal system in human subjects.

II. RELATED WORK

Previous approaches dealing with human motion analysis
can be subdivided into two main categories. The first cat-
egory deals with the segmentation of the motion data into
different actions or emotions. Approaches from the second
category try to build computational models reflecting the
underlying principles of human motion through optimization
of different criteria or objective functions. In this work, both
categories are relevant because the motor control deficits of
PD patients can be interpreted as a result of a specific perma-
nent emotional state or a motor control strategy following an
objective function that is different from the one adopted by
healthy subjects. In the following, we discuss representative
approaches for each category.

Rahimi et al. [1] presented an approach that uses principal
component analysis (PCA) to identify kinematic variables
that best represent mobility tasks performed by PD patients.
This method uses motion data of patients at different stages
of PD recorded in their home environments using a full-body
motion capture suit. Subsequently, the data were analyzed to
determine possible variability between tasks, subjects, and
trials. The results, however, state that no specific movement
profile among patients for each task has been found.

Das et al. [2] use a support vector machine (SVM) to dis-
criminate mild vs. severe Parkinson’s disease symptoms. The
authors recorded motions of PD patients performing various
motor control tasks and trained a motor task specific SVM
classifier based on different sets of features. Das et al. report
an average classification accuracy of approximately 90%.

Day et al. [3] tested the hypothesis that predictive motor
behavior is abnormal in Parkinson’s disease by recording the
performance of healthy and PD subjects tracking a repeated
and an unpredictable pattern of a moving spot with their
hand. Despite of the obvious motor control deficits of the
patients, the authors found that their tracking performace,
evaluated w.r.t. the measured tracking lags, is comparable to
that of healthy subjects.

Barbič et al. [4] investigated three techniques for au-
tomatic segmentation of motion capture data into distinct
actions, e.g., walking, drinking, or sitting down. The two
presented online segmentation techniques are PCA and prob-
abilistic PCA. The third approach is a batch process using

Gaussian mixture models for segmentation. All methods
achieved good results in the experiments, though probabilis-
tic PCA has found to provide the overall best performance.
Based on the work in [4], Zhou et al. [5] proposed aligned
cluster analysis, an extension of standard kernel k-means
clustering for temporal segmentation of human motion data
into actions. Here, the extension allows a variable number
of features in the cluster means and the use of a dynamic
time warping kernel to achieve temporal invariance. In a
further extension [6], Zhou et al. developed an approach
to implement a hierarchical decomposition of human mo-
tion data, where actions such as running or walking can
be further decomposed into motion primitives of smaller
temporal scale.

Cimen et al. [7] presented a technique using a set of pos-
ture, dynamic, and frequency-based descriptors for emotion
classification of motion data. Based on different feature com-
binations, this approach applies a SVM learning algorithm to
classify recorded motions into four distinct emotional states.
Aristidou et al. [8] propose a method to automatically extract
motion qualities from dance performances, in terms of laban
movement analyses (LMA) for motion analysis and indexing
purposes. Using the four LMA components body, effort,
shape, and space, the authors analyze correlations between
the performer’s acting emotional states.

Campos et al. [9] provided an overview of human arm
movement control theories and the different paradigms that
have been used in modelling arm control. The authors dis-
tinguish between descriptive, dynamic, stochastic and motor
execution models and analyze their relevance for rehabilita-
tion practices. Flash et al. [10] presented an approach for
modelling voluntary human arm movements mathematically
by defining an objective function representing the rate of
change of acceleration. By minimizing the objective function
using dynamic optimization, the method predicts trajectories
for point-to-point and curved motions that resemble the
observed motions of human subjects. Based on this work,
Todorov et al. [11] proposed a novel mathematical model
that accurately predicts the speed profiles of a human arm
in straight reaching and extemporaneous drawing move-
ments. The results indicate that the relationship between end-
effector path and speed profile of a complex arm movement
is stronger than previously thought.

Albrecht et al. [12] developed an approach that uses
physically inspired optimization principles describing a hu-
man’s motion based on bilevel optimization methods. These
principles are subsequently used to generate reaching motion
trajectories for a humanoid robot that are similar to the
recorded human behavior.

In contrast to all the above approaches, we aim at in-
vestigating the different motor control strategies adopted
by healthy subjects and patients affected by motor control
deficits. We hereby rely on the optimization of the joint
weights for a weighted damped least squares controller so
that the generated motion matches the observed reference
motions.



Fig. 2. XSens MVN motion capture suit used to record motions of healthy
and PD subjects performing clinical experiments.

70cm

40cm

50cm

Fig. 3. Hand coordination task: Subjects are asked to pour water from one
glass (green, at the left of the subject) into another, empty glass (blue).

III. MOTION DATABASE

The basis of our motor control analysis is a database
of motions recorded from healthy and PD subjects using a
whole-body motion capture suit (XSens MVN [13]) equipped
with 17 inertial measurement units (IMU), shown in Fig. 2.

A. Motion Data

The IMU sensor data of the suit is sampled at a frequency
rate of 120Hz and mapped to an artificial human avatar
composed of 23 segments and 22 joints. Since we are
investigating motor control deficits of PD patients in hand
coordination tasks, we are using only the data of the upper
body, i.e., the trajectories of the spine and arm joints.

B. Motor Control Task

To analyze the motions of PD patients and compare them
to motions of healthy subjects, we set up a task, where water
needs to be poured from one glass into another using the left
hand (see Fig. 3). The task has been designed such that the
resulting motions are composed of two sections, the coarse
subtask of transitioning the glass filled with water to the
empty glass and the delicate subtask of pouring the water
from one glass into the other without spilling.

IV. MOTION REPRESENTATION

The intrinsic model of the motion capture system for
representing the motions recorded from the upper body of
subjects, i.e., the spine and arm kinematic chain, is composed
of 8 spherical joints, and thus 24 degrees of freedom (DOF).
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Fig. 4. Artificial kinematic model of the human upper body.

Empirical analysis of the recorded data, however, revealed
that contrary to the model presented some human joints have
less than three rotation axes, thus resulting in only 19 DOF
actively contributing to the observed motions. Due to this
fact, we built a simplified artificial model used as a compact
representation for the motions of a human’s upper body in
hand coordination tasks.

A. Artificial Model of the Human Upper Body

The artificial kinematic model, shown in Fig. 4, is com-
posed of the previously mentioned 19 joints dominating
the execution of the hand coordination task. Here, the first
8 joints represent the motion of the spine and the remaining
11 joints the motion of the kinematic arm chain. The
configuration of the entire model is defined by the following
vector of joint angles

qh = (qspine , qarm)T , (1)

with
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where qspine and qarm denote the configurations of the spine
and arm chain, respectively. Here, the vector elements skj , a

k
j

refer to the roll, pitch, and yaw angle k ∈ {R,P, Y } of
joint j.

B. Motion Mapping

In order to map the recorded motions to our simplified
representation, we assign the joint trajectories qhi of the
19 dominant human joints to the respective joints of our
artificial model. Furthermore, we record the trajectory of the
hand xhe = (xe, ẋe)

T , referred to as the end-effector in the
following, over the entire motion sequence. The end-effector
pose trajectory xe of frame Fee expressed w.r.t. the fixed
frame Fhip is obtained by solving the forward kinematics for
each configuration qh(t) captured by the system at time t.
The end-effector velocity trajectory ẋe is determined by
differentiating the end-effector pose trajectory with respect
to time (∆t = 8ms for a sampling rate of 120Hz).

We use the same kinematic representation with the trajec-
tory information xhe and qh in the following to implement a



mathematical model that learns the underlying characteristics
of the motions in terms of motor control parameters.

V. LEARNING MOTOR CONTROL PARAMETERS

When applying a mathematical model for motor control
there exist infinite solutions of joint trajectories that achieve
the desired human end-effector trajectory xhe . A common
approach is to select a solution, generated through the
optimization of a specific objective function, that is assumed
to mirror the underlying motor control principles and thus
the resulting joint motions qh adopted by human beings.
While the minimum-jerk model [11] has found to yield a
close fit to natural human arm motions, it does not allow to
make any statements concerning the differences between the
motion of two different subjects. The motor control analysis
presented in this work relies on an iterative method for fitting
a mathematical model to the observed human motion by
adapting motor control parameters based on joint trajectory
error information.

A. End-Effector Trajectory Tracking

As a first step, our approach reproduces the recorded end-
effector trajectory xhe using a mathematical model, i.e., a
controller, for motion generation. A classical approach from
the literature to generate a desired end-effector path for
a kinematic structure is based on the inverse differential
kinematics control scheme [14]. In this approach, a desired
end-effector trajectory xd is tracked by numerical integration
of joint velocities over a given interval ∆t with the initial
configuration q(0). The joint positions required at time tk+1

to move the end-effector along the desired trajectory from
pose xd(tk) to xd(tk+1) are computed as

q(tk+1) = q(tk) + q̇(tk)∆t, (4)

with
q̇(t) = J−1(q(t))(ẋd(t) + Ke(t)), (5)

where J−1 is the Jacobian inverse evaluated in configura-
tion q, ẋd the desired velocity along the end-effector path,
and K a positive definite diagonal gain matrix whose scalar
values can be chosen so as to give individual weights to the
components of the error e. Note that the time dependency of
the variables is omitted from now on in favour of a compact
notation. The operational space error between the desired
xd and the actual end-effector position and orientation xc is
denoted as e and is defined as follows

e = xd − xc. (6)

e accounts for the numerical drift of the solution involved in
the integration process in Eq. (4). This ensures that the end-
effector pose corresponding to the computed joint variables
matches the desired one. Inversion of the Jacobian, however,
is only feasible if the number of operational space variables r
is equal to the number of joint space variables n, i.e., if J is a
square matrix. When r < n, as in our case where r = 6 and
n = 19, a manipulator is said to be redundant and we need

to refer to a modified control scheme. A solution scheme for
redundant manipulators is obtained by

q̇ = J̃†(ẋd + Ke) + (In − J̃†J)ż, (7)

where the Jacobian inverse in Eq. (5) has been replaced with
the damped least squares pseudoinverse, defined as

J̃† = J†dls = JT (JJT + λ2Ir)
−1. (8)

The term λ2 represents a dynamic damping factor used for
stabilization of the solution in the vicinity of kinematic
singularities, where the Jacobian becomes ill-conditioned
from a numerical viewpoint. In accordance with [15], we
use the following definition

λ2 =

{
0, if σ ≥ ε
(1− (σε )2)λ2

max , if σ < ε
(9)

where σ is the manipulability measure evaluated at each con-
figuration [16], λmax is the maximum damping factor, and ε
is the activation threshold, respectively. Using an activation
threshold ensures that damping is only applied when needed.
Moreover, we consider a second term in Eq. (7) projecting
a gradient ż into the null-space of the inverse differential
kinematics solution. This gradient can be used to fulfill
additional tasks without perturbing the end-effector trajectory
tracking performance. Here, we choose ż such that the joint
values of our model are kept within the range of human
joints, thus respecting the natural kinematic constraints of
the human musculoskeletal system. Following the approach
presented in [17], we define the gradient as follows

żi =


qi−q̃imax

∆q̄i
, if qi > q̃imax

qi−q̃imin

∆q̄i
, if qi < q̃imin

0, else,

(10)

where żi is the joint limit gradient for the i-th joint. Here, qi
indicates the current joint value and ∆q̄i = q̄imax

− q̄imin
its

respective absolute joint range. The variables q̃imin
and q̃imax

are used to select an upper and lower threshold for the joint
limit gradient activation defined as

q̃imin
= q̄imin

+ γ∆q̄i, (11)

q̃imax
= q̄imax

− γ∆q̄i, (12)

with γ ∈ [0.0, 0.5]. To track the human end-effector trajec-
tory with the damped least squares control scheme we set
xd = xe and ẋd = ẋe and choose the first configuration
of the recorded motion qh(0) at time t = 0 as the initial
configuration q(0) in our control setup.

B. Adaptive End-Effector Trajectory Tracking

The joint trajectories generated by Eq. (7) follow from
the minimization of a specific cost functional and represent
only one possible solution to track a desired end-effector
trajectory xhe . Alternative solutions can be obtained by
adding further objective functions, optimizing the motion
with respect to different criteria. In this work, we follow
the approach of Schinstock et al. [18] that parameterizes



Algorithm 1: Joint Weights Learning (qh, xhe , rmsethr ,
∆rmsethr )

1 w, winc , wgrad ← INIT JOINT WEIGHTS()
2 for i = 1 to max iter do
3 j idx ← 0
4 while j idx != num joints do
5 qc ← RUN J WDLS CONTROL(w, xh

e , qh(0))
6 w update ← UPDATE JOINT WEIGHT(qc

j idx , qh
j idx ,

wgrad
j idx , rmsethr , ∆rmsethr )

7 if (w update = FALSE) then
8 j idx ← j idx + 1
9 end

10 end
11 end
12 return w

the control scheme using joint weights in order to be able
to generate arbitrary joint trajectory solutions. To do so, we
use in Eq. (7) an extended variant of J†dls, referred to as the
weighted damped least squares pseudoinverse

J̃† = J†wdls = JTw(JwJ
T
w + λ2Ir)

−1, (13)

with
Jw = JWq, (14)

where Wq is a n× n diagonal matrix of joint weights for a
kinematic model such as the one depicted in Fig. 4, defined
as

Wq = diag(w1, w2, . . . , wn). (15)

Solving Eq. (7) using weighted damped least squares yields
q̇w, from which an approximated solution is obtained by

q̇ = Wqq̇w. (16)

Such a parameterization of the control law allows for model-
ing different motor control strategies that all track the same
desired end-effector trajectory. In case of Wq being the
identity matrix, Eq. (13) coincides with the damped least
squares solution defined in Eq. (8). On the other hand, lower
weights can be chosen for the joints of the spine to generate a
motion that is dominated by the joints of the arm kinematic
chain. In the following, we present an iterative scheme to
determine the values for the joint weights wi, required to
replicate the motions recorded from healthy and PD subjects
as close as possible.

C. Joint Weights Learning

The approach to determine the joint weights, given a
human end-effector trajectory xhe and joint trajectory so-
lution qh, is described as pseudocode in Alg. 1. The ad-
ditional input parameters rmsethr and ∆rmsethr define
thresholds for the error between the control-based and the
recorded human joint trajectories. In Line 1 of Alg. 1
the joint weight w, weight increment winc and gradient
direction wgrad vectors are initialized. Afterwards, max iter
runs of the joint weights learning algorithm are performed,
where each iteration corresponds to the stepwise optimization
of all joints weights along the kinematic chain of our
model. At the beginning of each iteration the index j idx

Algorithm 2: UPDATE JOINT WEIGHT (qci , qhi ,
wgrad , rmsethr, ∆rmsethr)

1 rmseti ← COMPUTE JOINT TRAJECTORY ERROR(qc
i , qh

i )
2 ∆rmseti ← rmseti − rmset−1

i
3 if (rmseti < rmsethr or ∆rmseti < ∆rmsethr) then
4 return FALSE
5 else
6 if (∆rmseti > 0) then
7 wgrad

i ← −wgrad
i

8 winc
i ← inc scale factor ∗winc

i
9 end

10 wi ← wi + (wgrad
i ∗ winc

i )
11 return TRUE
12 end

is set to 0, indicating that we start the weights optimization
process for the first joint of the spine segment, i.e., sR1
in Eq. (2). Using the initial configuration qh(0) and the
current joint weights w, we track the human end-effector
trajectory xhe by running the weighted damped least squares
control scheme presented in Sec. V-B and obtain the joint
trajectory solution qc (Line 5 of Alg. 1). Subsequently, the
joint trajectories qcj idx and qhj idx of the j idx-th joint,
generated by the controller and the human, respectively, are
used as input for the UPDATE JOINT WEIGHT function,
described in Alg. 2. Here, we determine in a first step the
root-mean-square error rmseti between the trajectories qci
and qhi of joint i and the change of that error ∆rmseti
with respect to the one computed in the previous itera-
tion rmset−1

i (Lines 1 and 2 of Alg. 2). If rmseti or
∆rmseti is below the thresholds rmsethr or ∆rmsethr ,
respectively, the algorithm returns FALSE, indicating that
the similarity between the control-based and human solution
for the motion of joint i has either reached a satisfactory
level or cannot be further improved through joint weight
adaption (Lines 3 and 4 of Alg. 2). Otherwise, we evaluate
whether the root-mean-square error has been decreased by
the last joint weight modification performed at t− 1 (Line 6
of Alg. 2). If that is not the case, the joint weight gradient
direction wgrad

i ∈ {1,−1} is switched and the current joint
weight increment winc

i is reduced by multiplying it with a
constant factor inc scale factor (Lines 7 and 8 of Alg. 2).
This factor helps to avoid undesired oscillation of the joint
weight and to ensure convergence of the learning algorithm.
If the joint weight update performed in the last iteration,
has improved the similarity between the control-based and
human joint trajectory the values of the variables wgrad

i and
winc
i remain the same. In a final step, the weight wi of joint i

is increased or decreased depending on the current gradient
direction wgrad

i and TRUE is returned, indicating that the
joint weight has been modified (Lines 10 and 11 of Alg. 2).

Depending on the weight update status w update re-
turned by the UPDATE JOINT WEIGHT function, the
joint weights learning algorithm proceeds in two different
ways (Line 6 of Alg. 1). If w update = TRUE, the weighted
damped least squares controller is run again with the new
joint weight wi followed by another joint trajectory error
evaluation. On the other hand, if w update = FALSE, the



Fig. 5. Average joint weights learned for the healthy (blue) and PD (red)
subject group. The y-axis values correspond to the final weights for the
joints indicated on the x-axis.

variable j idx is incremented to consider the weight of
the next joint along the chain for the optimization pro-
cess (Lines 7 and 8 of Alg. 1). When the maximum number
of iterations max iter is reached the final joint weight
vector w learned for the subject is returned (Line 12 of
Alg. 1). Note, that the joint trajectories generated by the
control scheme are not independent from each other, i.e.,
an improvement in similarity to the human motion achieved
for a specific joint trajectory solution qci by modification
of the respective joint weight wi may deteriorate the joint
trajectory solution qcj of another joint j. Therefore, we
run the entire weight optimization process max iter times
to find a compromise between conflicting joint weights,
mutually deteriorating each others similarity to the recorded
human joint trajectory solutions.

VI. IMPLEMENTATION DETAILS

The artificial human upper body model is generated in
ROS (Robot Operating System) by defining an urdf file (Uni-
versal Robot Description Format). For recording the human
end-effector trajectories we perform forward kinematics us-
ing the KDL library [19]. The error gain matrix K used
in Eq. (5) is set to the identity. For the joint limits avoidance
task, we set the activation parameter γ = 0.2. The parameters
used to determine the damping factor in Eq. (9) are set to
λmax = 0.04 and ε = 0.0008. For the weight learning
algorithm, we assign an initial value of 1 to all vector
elements of w and wgrad . The weight increment winc is
set to 0.8 for all joints. For the weight reduction factor we
use inc scale factor = 0.8 and for the joint trajectory error
thresholds rmsethr = 0.02 and ∆rmsethr = 0.001. In total
we perform max iter = 10 runs of the weight optimization
process.

VII. EXPERIMENTS

In the following, we present experimental results for a
database composed of motions recorded from healthy and PD
subjects. The results include an evaluation of the trajectory
tracking performance of our controller as well as an analysis
of the joint weights learned by our algorithm for two different
groups, PD patients and healthy subjects.

Fig. 6. Results from the independent sample t-test: Comparing the joint
weight means of the healthy and PD group against each other.

A. Experimental Setup

The two groups were recruited from the clinics move-
ment disorders outpatient clinic for the study of the hand
coordination task, described in Sec. III-B. All participants
gave their written informed consent and their data was
pseudonomized at study inclusion, all in accordance with
the Helsinki Declaration and to the local ethics committee
(Ethikkommission der Medizinischen Fakultät der Ludwig-
Maximilians-Universität).

Six PD patients participated in this study. They were
2 female and 4 male ranging from 48 to 74 (mean 65)
years of age. None had any additional disorder influencing
postural control. Patients were on their regular medication
in ON state, 2 had deep brain stimulation. Half of the
patients had pathological side left and right, respectively.
The momentary state of patients mobility was assessed just
prior to the experiment with the Unified Parkinsons Disease
Rating Scale (UPDRS mean 22.33±12.94 SD). Six control
subjects were recruited from relatives of the authors and
(former) university personnel, 3 female and 3 male ranging
from 48 to 62 (mean 57) years of age. None had history of
neurological disorders of any sort or orthopaedic disorders
requiring surgery or regular medication. All subjects were
right-handed. Each subject performed six repetitions of the
task, leading to an overall database of 36 motions for each
group.

B. Trajectory Tracking Performance

The mean Cartesian tracking error between the recorded
human end-effector trajectories xhe and the associated end-
effector trajectories obtained from the weighted damped least
squares control scheme using the final joint weights w,
learned from Alg. 1, is 0.64 cm. Using the final joint weights,
the mean residual error between the control-based and the
corresponding human reference joint trajectories is found to
be 0.029 rad, i.e., 1.69◦.

C. Motion Strategy Analysis

The primary goal of our work is to investigate the hypothe-
sis that healthy subjects and PD patients follow two different
motion strategies to achieve the same task. Here, we consider



the joint weights as indicative motor control parameters from
which we want to infer underlying motion strategies adopted
by the two groups. In this context, learning those parameters
can be considered a prerequisite for the following analysis.
In total, we learned the joint weights for 36 healthy and
PD affected hand coordination motions, respectively. Fig. 5
shows the mean and standard deviation for the weight of each
joint and group. These first results suggest, that the motions
of healthy and PD subjects primarily differ in the way
the arm kinematic chain is actuated for task achievement.
Healthy subjects show a strong tendency towards a proximal
motion strategy, with decreasing joint weights along the
arm chain, whereas PD subjects follow a distributed motion
strategy, with balanced joint weights along the arm chain.

In order to determine whether there is a significant differ-
ence between the joint activity in healthy and PD subjects,
we additionally performed an independent sample t-test for
each weight. The results depicted in Fig. 6 confirm that, in
particular, the weights for the proximal joints, shoulder pitch
sh pitch and upper arm roll up arm roll, are significantly
higher for healthy subjects than for PD patients (with a
significance level of α = 0.05 and α = 0.025, respectively).

Given these insights, it seems that healthy subjects nat-
urally use primarily the proximal joints to minimize the
distance to a given hand pose target. On the other hand, distal
joint activity is set aside for delicate hand pose adjustments.
PD seems to affect this motion strategy in terms of reduced
proximal joints activity. In order to complete the same task
successfully the reduced proximal motion is compensated by
raising the motion contribution of the remaining joints.

Note that in our experiments, the activation of the spine
joints were similar between the two groups, although PD
is well known to affect the postural stability of subjects.
This finding may result from patients recovering stability by
making use of the arm and back rest provided by the chair
they are sitting on while performing the task. In the future,
we will investigate whether the omission of arm and back rest
support yields significant differences between the weights
learned for the spine joints for healthy and PD subjects.

VIII. CONCLUSIONS

In this paper we present a novel approach to differentiate
between the underlying motion strategies adopted by healthy
subjects and patients whose motor control is affected by a
neurological disorder. We propose to learn indicative motor
control parameters of a control scheme based on captured
motion data. Our technique relies on a parameterization of
the control scheme by means of joint weights, reflecting the
activity level of joints contributing to the motion task. As we
have shown in the experiments, the chosen control scheme
is capable of closely replicating the recorded human end-
effector and joint trajectories using the learned joint weights
obtained from our algorithm.

According to our results on a motion database of healthy
and Parkinson’s disease subjects, there exist different motion
strategies adopted by the two groups, referred to as the
proximal and distributed motion strategy. Healthy subjects

follow a hierarchical joint activation paradigm, whereas PD
subjects show a balanced joint activation pattern. In general,
the advantage of this novel measure of motor behavior lies
in its independency of movement amplitudes and volition.
Because joint contributions are not easily visible even for
experienced neurologists, it might open a new field of motion
analysis, yielding to new measures of motor deficits, which
might be also used for evaluation of therapeutic interventions
such as deep brain stimulation in Parkinsons disease, even
in a closed-loop fashion.
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